-
1
-
-
0037375314
-
-
10.1016/S0370-1573(02)00633-6, and references therein.
-
N. Agraït, A. Levy Yeyati, and J. M. van Ruitenbeek, Phys. Rep. 377, 81 (2003) 10.1016/S0370-1573(02)00633-6
-
(2003)
Phys. Rep.
, vol.377
, pp. 81
-
-
Agraït, N.1
Levy Yeyati, A.2
Van Ruitenbeek, J.M.3
-
4
-
-
0342819025
-
-
10.1038/354056a0
-
S. Iijima, Nature (London) 354, 56 (1991). 10.1038/354056a0
-
(1991)
Nature (London)
, vol.354
, pp. 56
-
-
Iijima, S.1
-
5
-
-
59949098337
-
-
10.1103/RevModPhys.81.109
-
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81.109
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
8
-
-
0038610730
-
-
10.1103/PhysRevLett.90.187401
-
X. Zhao, Y. Ando, Y. Liu, M. Jinno, and T. Suzuki, Phys. Rev. Lett. 90, 187401 (2003). 10.1103/PhysRevLett.90.187401
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 187401
-
-
Zhao, X.1
Ando, Y.2
Liu, Y.3
Jinno, M.4
Suzuki, T.5
-
9
-
-
0141744967
-
-
10.1021/nl0341640
-
H. E. Troiani, Nano Lett. 3, 751 (2003). 10.1021/nl0341640
-
(2003)
Nano Lett.
, vol.3
, pp. 751
-
-
Troiani, H.E.1
-
10
-
-
19644366873
-
-
10.1103/PhysRevLett.93.136404
-
S. Tongay, R. T. Senger, S. Dag, and S. Ciraci, Phys. Rev. Lett. 93, 136404 (2004). 10.1103/PhysRevLett.93.136404
-
(2004)
Phys. Rev. Lett.
, vol.93
, pp. 136404
-
-
Tongay, S.1
Senger, R.T.2
Dag, S.3
Ciraci, S.4
-
11
-
-
21344455939
-
-
10.1016/j.radphyschem.2004.10.003
-
R. Caudillo, Radiat. Phys. Chem. 73, 334 (2005). 10.1016/j.radphyschem. 2004.10.003
-
(2005)
Radiat. Phys. Chem.
, vol.73
, pp. 334
-
-
Caudillo, R.1
-
12
-
-
33947234564
-
-
10.1103/PhysRevLett.98.116801
-
Z. Crljen and G. Baranovic, Phys. Rev. Lett. 98, 116801 (2007). 10.1103/PhysRevLett.98.116801
-
(2007)
Phys. Rev. Lett.
, vol.98
, pp. 116801
-
-
Crljen, Z.1
Baranovic, G.2
-
13
-
-
34347351274
-
-
10.1103/PhysRevB.75.195409
-
S. Okano and D. Tomanek, Phys. Rev. B 75, 195409 (2007). 10.1103/PhysRevB.75.195409
-
(2007)
Phys. Rev. B
, vol.75
, pp. 195409
-
-
Okano, S.1
Tomanek, D.2
-
14
-
-
65649094509
-
-
10.1103/PhysRevLett.102.205501
-
C. Jin, H. Lan, L. Peng, K. Suenaga, and S. Iijima, Phys. Rev. Lett. 102, 205501 (2009). 10.1103/PhysRevLett.102.205501
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 205501
-
-
Jin, C.1
Lan, H.2
Peng, L.3
Suenaga, K.4
Iijima, S.5
-
15
-
-
69249131325
-
-
10.1088/1367-2630/11/8/083019
-
A. Chuvilin, New J. Phys. 11, 083019 (2009). 10.1088/1367-2630/11/8/ 083019
-
(2009)
New J. Phys.
, vol.11
, pp. 083019
-
-
Chuvilin, A.1
-
18
-
-
42349087225
-
-
10.1021/nl0731872
-
A. A. Balandin, Nano Lett. 8, 902 (2008). 10.1021/nl0731872
-
(2008)
Nano Lett.
, vol.8
, pp. 902
-
-
Balandin, A.A.1
-
19
-
-
0026817702
-
-
10.1016/0921-4534(92)90947-B
-
C. J. Muller, Physica C 191, 485 (1992). 10.1016/0921-4534(92)90947-B
-
(1992)
Physica C
, vol.191
, pp. 485
-
-
Muller, C.J.1
-
20
-
-
53549133096
-
-
10.1038/nnano.2008.211
-
B. Peng, Nat. Nanotechnol. 3, 626 (2008). 10.1038/nnano.2008.211
-
(2008)
Nat. Nanotechnol.
, vol.3
, pp. 626
-
-
Peng, B.1
-
22
-
-
10644250257
-
-
10.1103/PhysRev.136.B864;
-
P. Hohenberg and W. Kohn, Phys. Rev. 136, B864 (1964) 10.1103/PhysRev.136.B864
-
(1964)
Phys. Rev.
, vol.136
, pp. 864
-
-
Hohenberg, P.1
Kohn, W.2
-
23
-
-
0042113153
-
-
10.1103/PhysRev.140.A1133
-
W. Kohn and L. J. Sham, Phys. Rev. 140, A1133 (1965). 10.1103/PhysRev.140.A1133
-
(1965)
Phys. Rev.
, vol.140
, pp. 1133
-
-
Kohn, W.1
Sham, L.J.2
-
24
-
-
77955739802
-
-
note
-
2) and a time step of 0.5 fs. The following protocol was used: (i) for each elongation step, the simulation was performed by 2000 steps; (ii) the system was elongated by 0.2 Å. The steps (i) and (ii) are repeated until the rupture of the system (Ref.). In our simulations, the edges of the GNRs were not saturated with hydrogen atoms (Ref.) since there are evidences that under experimental conditions the high current of high-energy electrons could remove the hydrogen atoms of system (Ref.).
-
-
-
-
26
-
-
0037171091
-
-
10.1088/0953-8984/14/11/302
-
J. M. Soler, J. Phys.: Condens. Matter 14, 2745 (2002). 10.1088/0953-8984/14/11/302
-
(2002)
J. Phys.: Condens. Matter
, vol.14
, pp. 2745
-
-
Soler, J.M.1
-
27
-
-
77955734291
-
-
12 ) larger than the experimental ones, which might not allow important atomic relaxations. In our procedure, the distribution of the small 0.2 Å increase in the overall length of the GNR tries to mimic these relaxation processes since each bond length will be closer to its final relaxed value before each simulation step was performed.
-
12 ) larger than the experimental ones, which might not allow important atomic relaxations. In our procedure, the distribution of the small 0.2 Å increase in the overall length of the GNR tries to mimic these relaxation processes since each bond length will be closer to its final relaxed value before each simulation step was performed.
-
-
-
-
28
-
-
77955730121
-
-
We have also performed simulations with the nanoribbon edges saturated with hydrogen and the main conclusions of the paper are not altered.
-
We have also performed simulations with the nanoribbon edges saturated with hydrogen and the main conclusions of the paper are not altered.
-
-
-
-
29
-
-
0003521686
-
-
in Springer Series in Optical Sciences, 4th ed., edited by P. W. Hawkes (Springer-Verlag, Berlin
-
L. Reimer, in Transmission Electron Microscopy, Springer Series in Optical Sciences, 4th ed., edited by, P. W. Hawkes, (Springer-Verlag, Berlin, 1997).
-
(1997)
Transmission Electron Microscopy
-
-
Reimer, L.1
-
30
-
-
77955723943
-
-
See supplementary material at http://link.aps.org/supplemental/10.1103/ PhysRevB.81.201406 for four movies showing the formation process of carbon atomic chain.
-
-
-
-
31
-
-
77955744431
-
-
Note that this is a necessary but not sufficient condition. We have performed simulations for the N3 geometry, where the two-coordinated carbon dimers are present but which due to the particular initial conditions evolved to a situation where the neck broke in one of the rows adjacent to the two-coordinated carbon dimers row with a mechanism similar to the rupture of the N1 system.
-
Note that this is a necessary but not sufficient condition. We have performed simulations for the N3 geometry, where the two-coordinated carbon dimers are present but which due to the particular initial conditions evolved to a situation where the neck broke in one of the rows adjacent to the two-coordinated carbon dimers row with a mechanism similar to the rupture of the N1 system.
-
-
-
-
32
-
-
33845282758
-
-
10.1021/ja00236a012;
-
J. R. Heath, J. Am. Chem. Soc. 109, 359 (1987) 10.1021/ja00236a012
-
(1987)
J. Am. Chem. Soc.
, vol.109
, pp. 359
-
-
Heath, J.R.1
-
33
-
-
0000068447
-
-
10.1126/science.267.5196.362
-
R. J. Lagow, Science 267, 362 (1995). 10.1126/science.267.5196.362
-
(1995)
Science
, vol.267
, pp. 362
-
-
Lagow, R.J.1
|