메뉴 건너뛰기




Volumn 405, Issue 2, 2010, Pages 184-191

Prediction of nitrophenol-type compounds using chemometrics and spectrophotometry

Author keywords

Chemometrics; Elman recurrent neural network; Least square support vector machines; Nitrophenol type compounds; Wavelet packet transform

Indexed keywords

PHENOLS; QUADRATIC PROGRAMMING; RECURRENT NEURAL NETWORKS; REGRESSION ANALYSIS; SPECTROPHOTOMETRY; SUPPORT VECTOR MACHINES; WAVELET ANALYSIS; WAVELET TRANSFORMS;

EID: 77955586793     PISSN: 00032697     EISSN: 10960309     Source Type: Journal    
DOI: 10.1016/j.ab.2010.06.032     Document Type: Article
Times cited : (20)

References (48)
  • 1
    • 39849096549 scopus 로고    scopus 로고
    • Chemometrics in analytical chemistry
    • Einax J.W. Chemometrics in analytical chemistry. Anal. Bioanal. Chem. 2008, 390:1225-1226.
    • (2008) Anal. Bioanal. Chem. , vol.390 , pp. 1225-1226
    • Einax, J.W.1
  • 2
    • 41049106342 scopus 로고    scopus 로고
    • Is there a future for chemometrics?, Are we still needed?
    • [editorial], Chemometr. Intell. Lab. Syst.
    • Is there a future for chemometrics? Are we still needed? [editorial], Chemometr. Intell. Lab. Syst. 191 (2008) 99-100.
    • (2008) , vol.191 , pp. 99-100
  • 3
    • 34548652560 scopus 로고    scopus 로고
    • Spectrophotometric resolution of ternary mixtures of tryptophan, tyrosine, and histidine with the aid of principal component-artificial neural network models
    • Hasani M., Moloudi M., Emami F. Spectrophotometric resolution of ternary mixtures of tryptophan, tyrosine, and histidine with the aid of principal component-artificial neural network models. Anal. Biochem. 2007, 370:68-76.
    • (2007) Anal. Biochem. , vol.370 , pp. 68-76
    • Hasani, M.1    Moloudi, M.2    Emami, F.3
  • 4
    • 0034627919 scopus 로고    scopus 로고
    • Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares
    • Ren S.X., Gao L. Simultaneous quantitative analysis of overlapping spectrophotometric signals using wavelet multiresolution analysis and partial least squares. Talanta 2000, 50:1163-1173.
    • (2000) Talanta , vol.50 , pp. 1163-1173
    • Ren, S.X.1    Gao, L.2
  • 5
    • 24944475100 scopus 로고    scopus 로고
    • Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods
    • Gao L., Ren S.X. Simultaneous spectrophotometric determination of four metals by two kinds of partial least squares methods. Spectrochim. Acta A 2005, 61:3013-3019.
    • (2005) Spectrochim. Acta A , vol.61 , pp. 3013-3019
    • Gao, L.1    Ren, S.X.2
  • 6
    • 1642418217 scopus 로고    scopus 로고
    • Application of multivariate resolution methods to the study of biochemical and biophysical processes
    • Jaumot J., Vives M., Gargallo R. Application of multivariate resolution methods to the study of biochemical and biophysical processes. Anal. Biochem. 2004, 327:1-13.
    • (2004) Anal. Biochem. , vol.327 , pp. 1-13
    • Jaumot, J.1    Vives, M.2    Gargallo, R.3
  • 7
    • 34548537453 scopus 로고    scopus 로고
    • Use of different artificial neural networks to resolve binary blends of monocultivar Italian olive oils
    • Marini F., Magri A.L., Bucci R., Magri A.D. Use of different artificial neural networks to resolve binary blends of monocultivar Italian olive oils. Anal. Chim. Acta 2007, 599:232-240.
    • (2007) Anal. Chim. Acta , vol.599 , pp. 232-240
    • Marini, F.1    Magri, A.L.2    Bucci, R.3    Magri, A.D.4
  • 8
    • 0042031251 scopus 로고    scopus 로고
    • Using artificial neural networks for process and system modeling
    • Verikas A., Bacauskiene M. Using artificial neural networks for process and system modeling. Chemometr. Intell. Lab. Syst. 2003, 67:187-191.
    • (2003) Chemometr. Intell. Lab. Syst. , vol.67 , pp. 187-191
    • Verikas, A.1    Bacauskiene, M.2
  • 9
    • 0031735568 scopus 로고    scopus 로고
    • Neural networks in multivariate calibration
    • Despagne F., Massart D.L. Neural networks in multivariate calibration. Analyst 1998, 123:157R-178R.
    • (1998) Analyst , vol.123
    • Despagne, F.1    Massart, D.L.2
  • 10
    • 33947311085 scopus 로고    scopus 로고
    • Non-linear regression methods in NIRS quantitative analysis
    • Perez-Marin D., Garrido-Varo A., Guerrero J.E. Non-linear regression methods in NIRS quantitative analysis. Talanta 2007, 72:28-42.
    • (2007) Talanta , vol.72 , pp. 28-42
    • Perez-Marin, D.1    Garrido-Varo, A.2    Guerrero, J.E.3
  • 11
    • 16644394005 scopus 로고    scopus 로고
    • Wavelet packet transform and artificial neural network applied to simultaneous kinetic multicomponent determination
    • Ren S.X., Gao L. Wavelet packet transform and artificial neural network applied to simultaneous kinetic multicomponent determination. Anal. Bioanal. Chem. 2004, 378:1392-1398.
    • (2004) Anal. Bioanal. Chem. , vol.378 , pp. 1392-1398
    • Ren, S.X.1    Gao, L.2
  • 12
    • 33845864728 scopus 로고    scopus 로고
    • Artificial neural networks for qualitative and quantitative analysis of target proteins with polymerized liposome vesicles
    • Santos M., Nadi S., Goicochea H.C., Haldar M.K., Campilia A.D., Mallik S. Artificial neural networks for qualitative and quantitative analysis of target proteins with polymerized liposome vesicles. Anal. Biochem. 2007, 361:109-119.
    • (2007) Anal. Biochem. , vol.361 , pp. 109-119
    • Santos, M.1    Nadi, S.2    Goicochea, H.C.3    Haldar, M.K.4    Campilia, A.D.5    Mallik, S.6
  • 13
    • 26444565569 scopus 로고
    • Finding structure in time
    • Elman J.L. Finding structure in time. Cogn. Sci. 1990, 14:179-211.
    • (1990) Cogn. Sci. , vol.14 , pp. 179-211
    • Elman, J.L.1
  • 14
    • 33645864384 scopus 로고    scopus 로고
    • Recurrent neural network for dynamic portfolio selection
    • Lin C.M., Huang J.J., Gen M., Tzeng G.H. Recurrent neural network for dynamic portfolio selection. Appl. Math. Comput. 2006, 175:1139-1146.
    • (2006) Appl. Math. Comput. , vol.175 , pp. 1139-1146
    • Lin, C.M.1    Huang, J.J.2    Gen, M.3    Tzeng, G.H.4
  • 15
    • 84990575058 scopus 로고
    • Orthogonal bases of compactly supported wavelets
    • Daubechies I. Orthogonal bases of compactly supported wavelets. Commun. Pure Appl. Math. 1988, 41:909-996.
    • (1988) Commun. Pure Appl. Math. , vol.41 , pp. 909-996
    • Daubechies, I.1
  • 16
    • 0026686049 scopus 로고
    • Singularity detection and processing with wavelets
    • Mallat S., Hwang W.L. Singularity detection and processing with wavelets. IEEE Trans. Inform. Theory 1992, 38:617-643.
    • (1992) IEEE Trans. Inform. Theory , vol.38 , pp. 617-643
    • Mallat, S.1    Hwang, W.L.2
  • 17
    • 0024903928 scopus 로고
    • Continuous and discrete wavelet transforms
    • Meil C.E., Walnut D.F. Continuous and discrete wavelet transforms. SIAM Rev. 1989, 31:628-666.
    • (1989) SIAM Rev. , vol.31 , pp. 628-666
    • Meil, C.E.1    Walnut, D.F.2
  • 19
    • 0028496320 scopus 로고
    • An overview of wavelet based multiresolution analysis
    • Jawerth B., Swedens W. An overview of wavelet based multiresolution analysis. SIAM Rev. 1994, 36:377-412.
    • (1994) SIAM Rev. , vol.36 , pp. 377-412
    • Jawerth, B.1    Swedens, W.2
  • 20
    • 0030977730 scopus 로고    scopus 로고
    • Preprocessing of HPLC trace impurity patterns by wavelet packets for pharmaceutical fingerprinting using artificial neural networks
    • Collantes E.R., Duta R., Welsh W.J. Preprocessing of HPLC trace impurity patterns by wavelet packets for pharmaceutical fingerprinting using artificial neural networks. Anal. Chem. 1997, 69:1392-1397.
    • (1997) Anal. Chem. , vol.69 , pp. 1392-1397
    • Collantes, E.R.1    Duta, R.2    Welsh, W.J.3
  • 21
    • 19344377961 scopus 로고    scopus 로고
    • Integrated wavelet principal component mapping for unsupervised clustering on near infra-red spectra
    • Donald D., Everingham Y., Coomans D. Integrated wavelet principal component mapping for unsupervised clustering on near infra-red spectra. Chemometr. Intell. Lab. Syst. 2005, 77:32-42.
    • (2005) Chemometr. Intell. Lab. Syst. , vol.77 , pp. 32-42
    • Donald, D.1    Everingham, Y.2    Coomans, D.3
  • 22
    • 71549134926 scopus 로고    scopus 로고
    • Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra
    • Jing M., Cai W.S., Shao X.G. Multiblock partial least squares regression based on wavelet transform for quantitative analysis of near infrared spectra. Chemometr. Intell. Lab. Syst. 2010, 100:22-27.
    • (2010) Chemometr. Intell. Lab. Syst. , vol.100 , pp. 22-27
    • Jing, M.1    Cai, W.S.2    Shao, X.G.3
  • 23
    • 58149177343 scopus 로고    scopus 로고
    • Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring
    • Reis M.S., Bauer A. Wavelet texture analysis of on-line acquired images for paper formation assessment and monitoring. Chemometr. Intell. Lab. Syst. 2009, 95:129-137.
    • (2009) Chemometr. Intell. Lab. Syst. , vol.95 , pp. 129-137
    • Reis, M.S.1    Bauer, A.2
  • 24
    • 33847300613 scopus 로고    scopus 로고
    • Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple
    • Nicolai B.M., Theron K.I., Lammertyn J. Kernel PLS regression on wavelet transformed NIR spectra for prediction of sugar content of apple. Chemometr. Intell. Lab. Syst. 2007, 85:243-252.
    • (2007) Chemometr. Intell. Lab. Syst. , vol.85 , pp. 243-252
    • Nicolai, B.M.1    Theron, K.I.2    Lammertyn, J.3
  • 25
    • 34247505032 scopus 로고    scopus 로고
    • Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy
    • Chalus P., Walter S., Ulmschneider M. Combined wavelet transform-artificial neural network use in tablet active content determination by near-infrared spectroscopy. Anal. Chim. Acta 2007, 591:219-224.
    • (2007) Anal. Chim. Acta , vol.591 , pp. 219-224
    • Chalus, P.1    Walter, S.2    Ulmschneider, M.3
  • 26
    • 33846465329 scopus 로고    scopus 로고
    • Improvement of prediction ability of PLS models employing the wavelet packet transform: a case study concerning FT-IR determination of gasoline parameters
    • dos Santos R.N.F., Galvao R.K.H., Araujo M.C.U., da Silva E.C. Improvement of prediction ability of PLS models employing the wavelet packet transform: a case study concerning FT-IR determination of gasoline parameters. Talanta 2007, 71:1136-1143.
    • (2007) Talanta , vol.71 , pp. 1136-1143
    • dos Santos, R.N.F.1    Galvao, R.K.H.2    Araujo, M.C.U.3    da Silva, E.C.4
  • 27
    • 0031002267 scopus 로고    scopus 로고
    • Noise suppression and signal compression using the wavelet packet transform
    • Walczak B., Massart D.L. Noise suppression and signal compression using the wavelet packet transform. Chemometr. Intell. Lab. Syst. 1997, 36:81-94.
    • (1997) Chemometr. Intell. Lab. Syst. , vol.36 , pp. 81-94
    • Walczak, B.1    Massart, D.L.2
  • 28
    • 0345561568 scopus 로고    scopus 로고
    • A novel algorithm of the wavelet packet transform and its application to de-noising of analytical signal
    • Shao X.G., Cai W.S. A novel algorithm of the wavelet packet transform and its application to de-noising of analytical signal. Anal. Lett. 1999, 32:743-760.
    • (1999) Anal. Lett. , vol.32 , pp. 743-760
    • Shao, X.G.1    Cai, W.S.2
  • 29
    • 71549122269 scopus 로고    scopus 로고
    • Combining orthogonal signal correction and wavelet packet transform with radial basis function neural networks for multicomponent determination
    • Gao L., Ren S.X. Combining orthogonal signal correction and wavelet packet transform with radial basis function neural networks for multicomponent determination. Chemometr. Intell. Lab. Syst. 2010, 100:57-65.
    • (2010) Chemometr. Intell. Lab. Syst. , vol.100 , pp. 57-65
    • Gao, L.1    Ren, S.X.2
  • 31
    • 0032594959 scopus 로고    scopus 로고
    • An overview of statistical learning theory
    • Vapnik V.N. An overview of statistical learning theory. IEEE Trans. Neural Networks 1999, 10:988-999.
    • (1999) IEEE Trans. Neural Networks , vol.10 , pp. 988-999
    • Vapnik, V.N.1
  • 33
    • 46049114855 scopus 로고    scopus 로고
    • Regularized least squares support vector regression for the simultaneous learning of a function and its derivative
    • Jayadeva, Khemchandani R., Chandra S. Regularized least squares support vector regression for the simultaneous learning of a function and its derivative. Inform. Sci. 2008, 178:3402-3414.
    • (2008) Inform. Sci. , vol.178 , pp. 3402-3414
    • Jayadeva1    Khemchandani, R.2    Chandra, S.3
  • 34
    • 56549111881 scopus 로고    scopus 로고
    • A novel LS-SVMs hyper-parameter selection based on particle swarm optimization
    • Guo X.C., Yang J.H., Wu C.G., Wang C.Y., Liang Y.C. A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 2008, 71:3211-3215.
    • (2008) Neurocomputing , vol.71 , pp. 3211-3215
    • Guo, X.C.1    Yang, J.H.2    Wu, C.G.3    Wang, C.Y.4    Liang, Y.C.5
  • 35
    • 58149203252 scopus 로고    scopus 로고
    • Support vector machines and its application in chemistry
    • Li H.D., Liang Y.Z., Xu Q.S. Support vector machines and its application in chemistry. Chemometr. Intell. Lab. Syst. 2009, 95:188-198.
    • (2009) Chemometr. Intell. Lab. Syst. , vol.95 , pp. 188-198
    • Li, H.D.1    Liang, Y.Z.2    Xu, Q.S.3
  • 36
    • 77955579087 scopus 로고    scopus 로고
    • Support vector regression for functional data in multivariate calibration problem
    • Hernandez N., Talavera I., Biscay R.J., Porro D., Ferreira M.M.C. Support vector regression for functional data in multivariate calibration problem. Anal. Chim. Acta 2007, 642:232-240.
    • (2007) Anal. Chim. Acta , vol.642 , pp. 232-240
    • Hernandez, N.1    Talavera, I.2    Biscay, R.J.3    Porro, D.4    Ferreira, M.M.C.5
  • 37
    • 43849098929 scopus 로고    scopus 로고
    • Tailored scoring function of trypsin-benzamidine complex using COMBINE descriptors and support vector regression
    • Arakaw M., Hasegawa K., Funastsu K. Tailored scoring function of trypsin-benzamidine complex using COMBINE descriptors and support vector regression. Chemometr. Intell. Lab. Syst. 2008, 92:141-151.
    • (2008) Chemometr. Intell. Lab. Syst. , vol.92 , pp. 141-151
    • Arakaw, M.1    Hasegawa, K.2    Funastsu, K.3
  • 38
    • 33846473189 scopus 로고    scopus 로고
    • Wavelet time-frequency analysis and least squares support vector machines for the identification of voice disorders
    • Fonseca E.S., Guido R.C., Scalassara P.R., Maciel C.D., Pereira J.C. Wavelet time-frequency analysis and least squares support vector machines for the identification of voice disorders. Comput. Biol. Med. 2007, 37:571-578.
    • (2007) Comput. Biol. Med. , vol.37 , pp. 571-578
    • Fonseca, E.S.1    Guido, R.C.2    Scalassara, P.R.3    Maciel, C.D.4    Pereira, J.C.5
  • 39
    • 33947320459 scopus 로고    scopus 로고
    • A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples
    • Li Y.K., Shao X.G., Cai W.S. A consensus least squares support vector regression (LS-SVR) for analysis of near-infrared spectra of plant samples. Talanta 2007, 72:217-222.
    • (2007) Talanta , vol.72 , pp. 217-222
    • Li, Y.K.1    Shao, X.G.2    Cai, W.S.3
  • 41
    • 34249317613 scopus 로고    scopus 로고
    • Breast cancer diagnosis using least square support vector machine
    • Polat K., Gunes S. Breast cancer diagnosis using least square support vector machine. Digital Signal Process. 2007, 17:694-701.
    • (2007) Digital Signal Process. , vol.17 , pp. 694-701
    • Polat, K.1    Gunes, S.2
  • 42
    • 34248592215 scopus 로고    scopus 로고
    • A cascade learning system for classification of diabetes disease: generalized discriminate analysis and least squares support vector machine
    • Polat K., Gunes S., Arslan A. A cascade learning system for classification of diabetes disease: generalized discriminate analysis and least squares support vector machine. Expert Syst. Appl. 2008, 34:482-487.
    • (2008) Expert Syst. Appl. , vol.34 , pp. 482-487
    • Polat, K.1    Gunes, S.2    Arslan, A.3
  • 43
    • 0029307534 scopus 로고
    • De-noising by soft-thresholding
    • Donoho D.L. De-noising by soft-thresholding. IEEE Trans. Inform. Theory 1995, 41:613-627.
    • (1995) IEEE Trans. Inform. Theory , vol.41 , pp. 613-627
    • Donoho, D.L.1
  • 45
    • 0021860190 scopus 로고
    • Spectrophotometric multicomponent analysis applied to trace metal determinations
    • Otto M., Wegscheider W. Spectrophotometric multicomponent analysis applied to trace metal determinations. Anal. Chem. 1985, 57:63-69.
    • (1985) Anal. Chem. , vol.57 , pp. 63-69
    • Otto, M.1    Wegscheider, W.2
  • 46
    • 0000682854 scopus 로고
    • Simultaneous spectrophotometric determination of cobalt, copper, and nickel by the full spectrum technique in the Fourier domain
    • Ren S.X., Gao L. Simultaneous spectrophotometric determination of cobalt, copper, and nickel by the full spectrum technique in the Fourier domain. Anal. Lett. 1995, 28:1665-1679.
    • (1995) Anal. Lett. , vol.28 , pp. 1665-1679
    • Ren, S.X.1    Gao, L.2
  • 47
    • 0031743440 scopus 로고    scopus 로고
    • Simultaneous spectrophotometric determination of manganese, zinc, and cobalt by kernel partial least-squares method
    • Ren S.X., Gao L. Simultaneous spectrophotometric determination of manganese, zinc, and cobalt by kernel partial least-squares method. J. Automat. Chem. 1998, 20:179-183.
    • (1998) J. Automat. Chem. , vol.20 , pp. 179-183
    • Ren, S.X.1    Gao, L.2
  • 48
    • 0002553580 scopus 로고    scopus 로고
    • Modification of Malinowski's F-test for abstract factor analysis applied to the quail roost II data set
    • Faber K., Kowalski B. Modification of Malinowski's F-test for abstract factor analysis applied to the quail roost II data set. J. Chemometr. 1997, 11:53-72.
    • (1997) J. Chemometr. , vol.11 , pp. 53-72
    • Faber, K.1    Kowalski, B.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.