메뉴 건너뛰기




Volumn 82, Issue 2, 2010, Pages

Separation and fractionation of order and disorder in highly polydisperse systems

Author keywords

[No Author keywords available]

Indexed keywords

AMORPHOUS STATE; BIG PARTICLES; COMPLEX PATTERN; CRYSTAL-AMORPHOUS; DYNAMIC GLASS TRANSITION; FINITE-SIZE SCALING ANALYSIS; FLUID-SOLID TRANSITION; MONTE CARLO SIMULATION; ORDER AND DISORDER; POLYDISPERSE SYSTEMS; POLYDISPERSES; THERMODYNAMIC LIMITS; THERMODYNAMICALLY STABLE; TWO PHASIS;

EID: 77955576656     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.82.021501     Document Type: Article
Times cited : (13)

References (35)
  • 2
    • 0000220874 scopus 로고    scopus 로고
    • 10.1063/1.477753
    • P. Bartlett, J. Chem. Phys. 109, 10970 (1998). 10.1063/1.477753
    • (1998) J. Chem. Phys. , vol.109 , pp. 10970
    • Bartlett, P.1
  • 3
  • 5
    • 37649029041 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.70.041410
    • M. Fasolo and P. Sollich, Phys. Rev. E 70, 041410 (2004). 10.1103/PhysRevE.70.041410
    • (2004) Phys. Rev. e , vol.70 , pp. 041410
    • Fasolo, M.1    Sollich, P.2
  • 6
    • 17044450016 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.92.195702
    • R. P. A. Dullens and W. K. Kegel, Phys. Rev. Lett. 92, 195702 (2004). 10.1103/PhysRevLett.92.195702
    • (2004) Phys. Rev. Lett. , vol.92 , pp. 195702
    • Dullens, R.P.A.1    Kegel, W.K.2
  • 12
    • 4043069497 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.90.035701
    • Q. Yan and J. J. de Pablo, Phys. Rev. Lett. 90, 035701 (2003). 10.1103/PhysRevLett.90.035701
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 035701
    • Yan, Q.1    De Pablo, J.J.2
  • 14
    • 77955576327 scopus 로고    scopus 로고
    • e-print arXiv:cond-mat/0107459.
    • L. Santen and W. Krauth, e-print arXiv:cond-mat/0107459.
    • Santen, L.1    Krauth, W.2
  • 16
  • 17
    • 0004986545 scopus 로고
    • 10.1088/0034-4885/55/3/001
    • W. Gotze and L. Sjogren, Rep. Prog. Phys. 55, 241 (1992). 10.1088/0034-4885/55/3/001
    • (1992) Rep. Prog. Phys. , vol.55 , pp. 241
    • Gotze, W.1    Sjogren, L.2
  • 18
    • 42749100687 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.67.031507
    • V. N. Novikov and A. P. Sokolov, Phys. Rev. E 67, 031507 (2003). 10.1103/PhysRevE.67.031507
    • (2003) Phys. Rev. e , vol.67 , pp. 031507
    • Novikov, V.N.1    Sokolov, A.P.2
  • 19
    • 0032558916 scopus 로고    scopus 로고
    • 10.1063/1.477552
    • R. Lustig, J. Chem. Phys. 109, 8816 (1998). 10.1063/1.477552
    • (1998) J. Chem. Phys. , vol.109 , pp. 8816
    • Lustig, R.1
  • 20
    • 34047163875 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.98.137207
    • V. Martin-Mayor, Phys. Rev. Lett. 98, 137207 (2007). 10.1103/PhysRevLett. 98.137207
    • (2007) Phys. Rev. Lett. , vol.98 , pp. 137207
    • Martin-Mayor, V.1
  • 25
    • 0003883269 scopus 로고    scopus 로고
    • in edited by J. Kerstész and Springer-Verlag, Berlin, I. Kondor
    • E. Marinari, in Advances in Computer Simulation, edited by, J. Kerstész, and, I. Kondor, (Springer-Verlag, Berlin, 1998).
    • (1998) Advances in Computer Simulation
    • Marinari, E.1
  • 26
    • 0035306293 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.63.045102
    • T. S. Grigera and G. Parisi, Phys. Rev. E 63, 045102 (2001). 10.1103/PhysRevE.63.045102
    • (2001) Phys. Rev. e , vol.63 , pp. 045102
    • Grigera, T.S.1    Parisi, G.2
  • 30
    • 77949549170 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.104.118302
    • P. Sollich and N. B. Wilding, Phys. Rev. Lett. 104, 118302 (2010). 10.1103/PhysRevLett.104.118302
    • (2010) Phys. Rev. Lett. , vol.104 , pp. 118302
    • Sollich, P.1    Wilding, N.B.2
  • 32
    • 42749103443 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.69.051201
    • C. C. Yu and H. M. Carruzzo, Phys. Rev. E 69, 051201 (2004). 10.1103/PhysRevE.69.051201
    • (2004) Phys. Rev. e , vol.69 , pp. 051201
    • Yu, C.C.1    Carruzzo, H.M.2
  • 34
    • 77955562043 scopus 로고    scopus 로고
    • note
    • Strictly speaking, the long distance cutoff spoils scale invariance, so that one could question that Γ is the controlling thermodynamic parameter. In practice, the cutoff is chosen to balance two mutually contradicting goals. On the one hand, the larger the cutoff distance, the lesser is the disturbance to the system. On the other hand, the computational cost significantly diminishes when one decreases the cutoff. Furthermore, the functional form of the cutoff is formulated to eliminate discontinuities, and thereby reduce its artificial effects. In fact, the Mode Coupling transition has been located with a variety of cutoff choices and polydispersities (see and present work). In all cases, when temperatures are expressed in terms of Γ, the location of the Mode Coupling transition Γ g agreed to an accuracy of at least 1%.
  • 35
    • 77955562633 scopus 로고    scopus 로고
    • note
    • This is doing by following the random walk of each copy of the system in energy space. One easily realizes that, along the simulation, the system switches between trapped and ergodic phases. During a trapped phase, one or more copies of the system remains confined at the lowest energies and displays larger values of F. In fact, the characteristic time τ S S corresponds to the average duration of the trapped phase. The statistical analysis can be done either considering the full simulation or only the ergodic pieces of it. The Maxwell construction comes out compatible within statistical errors.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.