-
1
-
-
17144462455
-
-
10.1103/PhysRevB.62.14237
-
H. G. Ballesteros, A. Cruz, L. A. Fernandez, V. Martin-Mayor, J. Pech, J. J. Ruiz-Lorenzo, A. Tarancon, P. Tellez, C. L. Ullod, and C. Ungil, Phys. Rev. B 62, 14237 (2000). 10.1103/PhysRevB.62.14237
-
(2000)
Phys. Rev. B
, vol.62
, pp. 14237
-
-
Ballesteros, H.G.1
Cruz, A.2
Fernandez, L.A.3
Martin-Mayor, V.4
Pech, J.5
Ruiz-Lorenzo, J.J.6
Tarancon, A.7
Tellez, P.8
Ullod, C.L.9
Ungil, C.10
-
5
-
-
0000827068
-
-
10.1103/PhysRevLett.80.5421
-
H. Kawamura, Phys. Rev. Lett. 80, 5421 (1998). 10.1103/PhysRevLett.80. 5421
-
(1998)
Phys. Rev. Lett.
, vol.80
, pp. 5421
-
-
Kawamura, H.1
-
6
-
-
29744445117
-
-
10.1103/PhysRevB.72.144416
-
K. Hukushima and H. Kawamura, Phys. Rev. B 72, 144416 (2005). 10.1103/PhysRevB.72.144416
-
(2005)
Phys. Rev. B
, vol.72
, pp. 144416
-
-
Hukushima, K.1
Kawamura, H.2
-
7
-
-
0038792178
-
-
10.1103/PhysRevLett.90.227203
-
L. W. Lee and A. P. Young, Phys. Rev. Lett. 90, 227203 (2003). 10.1103/PhysRevLett.90.227203
-
(2003)
Phys. Rev. Lett.
, vol.90
, pp. 227203
-
-
Lee, L.W.1
Young, A.P.2
-
8
-
-
33751299300
-
-
10.1103/PhysRevLett.97.217204
-
I. Campos, M. Cotallo-Aban, V. Martin-Mayor, S. Perez-Gaviro, and A. Tarancon, Phys. Rev. Lett. 97, 217204 (2006). 10.1103/PhysRevLett.97.217204
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 217204
-
-
Campos, I.1
Cotallo-Aban, M.2
Martin-Mayor, V.3
Perez-Gaviro, S.4
Tarancon, A.5
-
9
-
-
34447124489
-
-
10.1103/PhysRevB.76.024405
-
L. W. Lee and A. P. Young, Phys. Rev. B 76, 024405 (2007). 10.1103/PhysRevB.76.024405
-
(2007)
Phys. Rev. B
, vol.76
, pp. 024405
-
-
Lee, L.W.1
Young, A.P.2
-
10
-
-
59249086089
-
-
10.1103/PhysRevLett.102.027202
-
D. X. Viet and H. Kawamura, Phys. Rev. Lett. 102, 027202 (2009). 10.1103/PhysRevLett.102.027202
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 027202
-
-
Viet, D.X.1
Kawamura, H.2
-
11
-
-
69549117788
-
-
arXiv:0904.3699 (unpublished).
-
D. X. Viet and H. Kawamura, arXiv:0904.3699 (unpublished).
-
-
-
Viet, D.X.1
Kawamura, H.2
-
12
-
-
69549105204
-
-
To our knowledge, a 483 lattice is the largest spin glass that has been thermalized near a finite-temperature phase transition. It is curious that larger sizes can be studied for the Heisenberg model than for the Ising cases [for which the 283 samples studied by Hasenbusch (Ref.) seems to be the record], even though the updating code is more complicated. Evidently, the barriers between valleys are lower in the Heisenberg model
-
To our knowledge, a 483 lattice is the largest spin glass that has been thermalized near a finite-temperature phase transition. It is curious that larger sizes can be studied for the Heisenberg model than for the Ising cases [for which the 283 samples studied by Hasenbusch (Ref.) seems to be the record], even though the updating code is more complicated. Evidently, the barriers between valleys are lower in the Heisenberg model.
-
-
-
-
16
-
-
69549112255
-
-
For the CG, one considers a transverse or parallel ξCG,L, depending on whether μI kmin =0 or not (Refs.). We report only the parallel ξCG,L as the two coincide within errors.
-
For the CG, one considers a transverse or parallel ξCG,L, depending on whether μI kmin =0 or not (Refs.). We report only the parallel ξCG,L as the two coincide within errors.
-
-
-
-
18
-
-
1542641001
-
-
10.1016/0370-2693(96)00984-7
-
H. G. Ballesteros, L. A. Fernández, V. Martín-Mayor, and A. Muñoz Sudupe, Phys. Lett. B 387, 125 (1996). 10.1016/0370-2693(96)00984-7
-
(1996)
Phys. Lett. B
, vol.387
, pp. 125
-
-
Ballesteros, H.G.1
Fernández, L.A.2
Martín-Mayor, V.3
Muñoz Sudupe, A.4
-
19
-
-
49649135612
-
-
10.1016/0378-4371(75)90021-7
-
M. P. Nightingale, Physica A 83, 561 (1975). 10.1016/0378-4371(75)90021-7
-
(1975)
Physica A
, vol.83
, pp. 561
-
-
Nightingale, M.P.1
-
21
-
-
47949091459
-
-
10.1103/PhysRevB.78.014419
-
J. H. Pixley and A. P. Young, Phys. Rev. B 78, 014419 (2008). 10.1103/PhysRevB.78.014419
-
(2008)
Phys. Rev. B
, vol.78
, pp. 014419
-
-
Pixley, J.H.1
Young, A.P.2
-
23
-
-
69549134658
-
-
Given the set of temperatures {Ti}, let f (T) be a cubic polynomial in T-1 (unique up to an irrelevant multiplicative constant) with i f (Ti) =0 and f′ (Tmax) =0, and changing sign at 0.14 Tc. Let ft be f (T) for the T occupied by one copy of the system at time t. We first coarse grain ft by averaging over 100 consecutive MC sweeps and then compute its autocorrelation function and integrated autocorrelation time (Refs.).
-
Given the set of temperatures {Ti}, let f (T) be a cubic polynomial in T-1 (unique up to an irrelevant multiplicative constant) with i f (Ti) =0 and f′ (Tmax) =0, and changing sign at 0.14 Tc. Let ft be f (T) for the T occupied by one copy of the system at time t. We first coarse grain ft by averaging over 100 consecutive MC sweeps and then compute its autocorrelation function and integrated autocorrelation time (Refs.).
-
-
-
-
25
-
-
69549131867
-
-
The T SG,CG (L,sL) are statistically correlated, so one should use the full covariance matrix to compute χ2. However, we find that considering only diagonal covariances does not significantly change the results. We give results obtained with diagonal covariances since these can be reproduced from the data in Table 2.
-
The T SG,CG (L,sL) are statistically correlated, so one should use the full covariance matrix to compute χ2. However, we find that considering only diagonal covariances does not significantly change the results. We give results obtained with diagonal covariances since these can be reproduced from the data in Table 2.
-
-
-
-
26
-
-
0003671053
-
-
edited by C. DeWitt-Morette, P. Cartier, and A. Folacci (Plenum, New York
-
A. Sokal, in Functional Integration: Basics and Applications, edited by, C. DeWitt-Morette, P. Cartier and, A. Folacci, (Plenum, New York, 1997)
-
(1997)
Functional Integration: Basics and Applications
-
-
Sokal, A.1
|