-
2
-
-
0028484814
-
-
10.1021/ma00095a001
-
L. Fetters, D. Lohse, D. Richter, T. Witten, and A. Zirkel, Macromolecules 27, 4639 (1994). 10.1021/ma00095a001
-
(1994)
Macromolecules
, vol.27
, pp. 4639
-
-
Fetters, L.1
Lohse, D.2
Richter, D.3
Witten, T.4
Zirkel, A.5
-
3
-
-
0032664790
-
-
10.1002/(SICI)1099-0488(19990515)37:10<1023::AID-POLB7>3.0.CO;2-T
-
L. Fetters, D. Lohse, and W. Graessley, J. Polym. Sci., Part B: Polym. Phys. 37, 1023 (1999). 10.1002/(SICI)1099-0488(19990515)37:10<1023::AID- POLB7>3.0.CO;2-T
-
(1999)
J. Polym. Sci., Part B: Polym. Phys.
, vol.37
, pp. 1023
-
-
Fetters, L.1
Lohse, D.2
Graessley, W.3
-
4
-
-
36949005408
-
-
10.1021/ma0712549
-
S. Wang, Macromolecules 40, 8684 (2007). 10.1021/ma0712549
-
(2007)
Macromolecules
, vol.40
, pp. 8684
-
-
Wang, S.1
-
7
-
-
4243172252
-
-
10.1016/0032-3861(74)90185-2
-
R. Kusy and D. Turner, Polymer 15, 394 (1974). 10.1016/0032-3861(74) 90185-2
-
(1974)
Polymer
, vol.15
, pp. 394
-
-
Kusy, R.1
Turner, D.2
-
12
-
-
29144493187
-
-
10.1209/epl/i2005-10338-1
-
M. Zamponi, M. Monkenbusch, L. Willner, A. Wischnewski, and D. Richter, EPL 72, 1039 (2005). 10.1209/epl/i2005-10338-1
-
(2005)
EPL
, vol.72
, pp. 1039
-
-
Zamponi, M.1
Monkenbusch, M.2
Willner, L.3
Wischnewski, A.4
Richter, D.5
-
13
-
-
0037017257
-
-
10.1103/PhysRevLett.88.058301
-
A. Wischnewski, M. Monkenbusch, L. Willner, D. Richter, A. E. Likhtman, T. C. B. McLeish, and B. Farago, Phys. Rev. Lett. 88, 058301 (2002). 10.1103/PhysRevLett.88.058301
-
(2002)
Phys. Rev. Lett.
, vol.88
, pp. 058301
-
-
Wischnewski, A.1
Monkenbusch, M.2
Willner, L.3
Richter, D.4
Likhtman, A.E.5
McLeish, T.C.B.6
Farago, B.7
-
14
-
-
70349342717
-
-
10.1103/PhysRevLett.103.136001
-
D. Auhl, P. Chambon, T. C. B. McLeish, and D. J. Read, Phys. Rev. Lett. 103, 136001 (2009). 10.1103/PhysRevLett.103.136001
-
(2009)
Phys. Rev. Lett.
, vol.103
, pp. 136001
-
-
Auhl, D.1
Chambon, P.2
McLeish, T.C.B.3
Read, D.J.4
-
16
-
-
0000647845
-
-
10.1021/ma00161a040
-
A. Yang, E. Kramer, C. Kuo, and S. Phoenix, Macromolecules 19, 2020 (1986). 10.1021/ma00161a040
-
(1986)
Macromolecules
, vol.19
, pp. 2020
-
-
Yang, A.1
Kramer, E.2
Kuo, C.3
Phoenix, S.4
-
18
-
-
0002605128
-
-
10.1007/BFb0024055
-
E. Kramer, Adv. Polym. Sci. 52-53, 1 (1983). 10.1007/BFb0024055
-
(1983)
Adv. Polym. Sci.
, vol.52-53
, pp. 1
-
-
Kramer, E.1
-
20
-
-
83555172019
-
-
10.1103/PhysRevE.68.011801
-
J. Rottler and M. O. Robbins, Phys. Rev. E 68, 011801 (2003). 10.1103/PhysRevE.68.011801
-
(2003)
Phys. Rev. e
, vol.68
, pp. 011801
-
-
Rottler, J.1
Robbins, M.O.2
-
22
-
-
0020101725
-
-
10.1016/0032-3861(82)90354-8
-
A. Donald and E. Kramer, Polymer 23, 461 (1982). 10.1016/0032-3861(82) 90354-8
-
(1982)
Polymer
, vol.23
, pp. 461
-
-
Donald, A.1
Kramer, E.2
-
23
-
-
0026151515
-
-
10.1021/ma00010a018
-
H. Brown, Macromolecules 24, 2752 (1991). 10.1021/ma00010a018
-
(1991)
Macromolecules
, vol.24
, pp. 2752
-
-
Brown, H.1
-
25
-
-
0001077029
-
-
10.1007/BF01028352
-
H. Brown, J. Mater. Sci. 14, 237 (1979). 10.1007/BF01028352
-
(1979)
J. Mater. Sci.
, vol.14
, pp. 237
-
-
Brown, H.1
-
26
-
-
18144427514
-
-
10.1103/PhysRevLett.94.127801
-
L. Si, M. V. Massa, K. Dalnoki-Veress, H. R. Brown, and R. A. L. Jones, Phys. Rev. Lett. 94, 127801 (2005). 10.1103/PhysRevLett.94.127801
-
(2005)
Phys. Rev. Lett.
, vol.94
, pp. 127801
-
-
Si, L.1
Massa, M.V.2
Dalnoki-Veress, K.3
Brown, H.R.4
Jones, R.A.L.5
-
27
-
-
33845374611
-
-
10.1021/ma00161a039
-
A. Yang, E. Kramer, C. Kuo, and S. Phoenix, Macromolecules 19, 2010 (1986). 10.1021/ma00161a039
-
(1986)
Macromolecules
, vol.19
, pp. 2010
-
-
Yang, A.1
Kramer, E.2
Kuo, C.3
Phoenix, S.4
-
29
-
-
0035933255
-
-
10.1021/ma001367r
-
J. Lin and A. Yang, Macromolecules 34, 3698 (2001). 10.1021/ma001367r
-
(2001)
Macromolecules
, vol.34
, pp. 3698
-
-
Lin, J.1
Yang, A.2
-
30
-
-
0023237919
-
-
10.1126/science.237.4813.384
-
J. Rudnick and G. Gaspari, Science 237, 384 (1987). 10.1126/science.237. 4813.384
-
(1987)
Science
, vol.237
, pp. 384
-
-
Rudnick, J.1
Gaspari, G.2
-
31
-
-
77955577023
-
-
Lin and Yang and Si have shown that AFM can be used to obtain information consistent with the well established transmission electron microscopy (TEM) technique of Kramer and Brown. We have further verified this assumption here by directly comparing TEM and AFM measurements.
-
Lin and Yang and Si have shown that AFM can be used to obtain information consistent with the well established transmission electron microscopy (TEM) technique of Kramer and Brown. We have further verified this assumption here by directly comparing TEM and AFM measurements.
-
-
-
-
32
-
-
77955563071
-
-
If the short component is too short to entangle, then as =0. In this case the expression is equivalent to the one found elsewhere.
-
If the short component is too short to entangle, then a s = 0. In this case the expression is equivalent to the one found elsewhere.
-
-
-
|