메뉴 건너뛰기




Volumn 40, Issue 8, 2010, Pages 723-732

Nonlinear dimensionality reduction of gene expression data for visualization and clustering analysis of cancer tissue samples

Author keywords

Cancer tissue; Clustering analysis; Gene expression; Nonlinear dimensionality reduction; Visualization

Indexed keywords

CANCER TISSUES; CLUSTERING ANALYSIS; COMPARATIVE ANALYSIS; DATA DIMENSIONS; DATA SETS; ENVIRONMENTAL FACTORS; EUCLIDEAN DISTANCE; EXPRESSION PATTERNS; EXPRESSION PROFILE; FEATURE SELECTION; FEATURE SPACE; FUNCTION MODULE; GENE EXPRESSION DATA; GENE FUNCTION; HIGH DIMENSIONS; NONLINEAR CONNECTIONS; NONLINEAR DIMENSIONALITY REDUCTION; NONLINEAR INTERACTIONS; SMALL SAMPLES;

EID: 77955572424     PISSN: 00104825     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.compbiomed.2010.06.007     Document Type: Article
Times cited : (35)

References (31)
  • 3
    • 0034601455 scopus 로고    scopus 로고
    • Molecular classification of cutaneous malignant melanoma by gene expression profiling
    • Bittner M., Meltzer P., et al. Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 2000, 406(6795):536-540.
    • (2000) Nature , vol.406 , Issue.6795 , pp. 536-540
    • Bittner, M.1    Meltzer, P.2
  • 6
    • 0141729454 scopus 로고    scopus 로고
    • New algorithms for multi-class cancer diagnosis using tumor gene expression signatures
    • Bagirov A.M., Ferguson B., Ivkovic S., Saunders G., Yearwood J. New algorithms for multi-class cancer diagnosis using tumor gene expression signatures. Bioinformatics 2003, 19(14):1800-1807.
    • (2003) Bioinformatics , vol.19 , Issue.14 , pp. 1800-1807
    • Bagirov, A.M.1    Ferguson, B.2    Ivkovic, S.3    Saunders, G.4    Yearwood, J.5
  • 7
    • 8844241460 scopus 로고    scopus 로고
    • Class discovery and classification of tumor samples using mixture modeling of gene expression data-a unified approach
    • Alexandridis R., Lin S., Irwin M. Class discovery and classification of tumor samples using mixture modeling of gene expression data-a unified approach. Bioinformatics 2004, 20(16):2545-2552.
    • (2004) Bioinformatics , vol.20 , Issue.16 , pp. 2545-2552
    • Alexandridis, R.1    Lin, S.2    Irwin, M.3
  • 8
    • 15844413351 scopus 로고    scopus 로고
    • A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis
    • Statnikov A., Aliferis C.F., Tsamardinos I., Hardin D., Levy S. A comprehensive evaluation of multicategory classification methods for microarray gene expression cancer diagnosis. Bioinformatics 2005, 21(5):631-643.
    • (2005) Bioinformatics , vol.21 , Issue.5 , pp. 631-643
    • Statnikov, A.1    Aliferis, C.F.2    Tsamardinos, I.3    Hardin, D.4    Levy, S.5
  • 9
    • 67749108622 scopus 로고    scopus 로고
    • Tumor clustering using nonnegative matrix factorization with gene selection
    • Zheng C., Huang D.S., et al. Tumor clustering using nonnegative matrix factorization with gene selection. IEEE Transaction on Information Technology in Biomedicine 2009, 13(4):599-607.
    • (2009) IEEE Transaction on Information Technology in Biomedicine , vol.13 , Issue.4 , pp. 599-607
    • Zheng, C.1    Huang, D.S.2
  • 10
    • 46649091956 scopus 로고    scopus 로고
    • Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis
    • Liu W., Yuan K., Ye D. Reducing microarray data via nonnegative matrix factorization for visualization and clustering analysis. Jounal of Biological Informatics 2008, 41(3):602-606.
    • (2008) Jounal of Biological Informatics , vol.41 , Issue.3 , pp. 602-606
    • Liu, W.1    Yuan, K.2    Ye, D.3
  • 11
    • 0036271042 scopus 로고    scopus 로고
    • Effective dimensionality for principal component analysis of time series expression data
    • Hornquist M., Hertz J., Wahde M. Effective dimensionality for principal component analysis of time series expression data. BioSystems 2002, 65(2-3):147-156.
    • (2002) BioSystems , vol.65 , Issue.2-3 , pp. 147-156
    • Hornquist, M.1    Hertz, J.2    Wahde, M.3
  • 12
    • 33746924562 scopus 로고    scopus 로고
    • The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data
    • Howley T., Madden M.G., O'Connell M.-L., Ryder A.G. The effect of principal component analysis on machine learning accuracy with high-dimensional spectral data. Knowledge-Based Systems 2006, 19:363-370.
    • (2006) Knowledge-Based Systems , vol.19 , pp. 363-370
    • Howley, T.1    Madden, M.G.2    O'Connell, M.-L.3    Ryder, A.G.4
  • 13
    • 19544391863 scopus 로고    scopus 로고
    • A web-based tool for principal component and significance analysis of microarray data
    • Sharov A.A., Dudekula D.B., Ko M.S.H. A web-based tool for principal component and significance analysis of microarray data. Bioinformatics 2005, 21(10):2548-2549.
    • (2005) Bioinformatics , vol.21 , Issue.10 , pp. 2548-2549
    • Sharov, A.A.1    Dudekula, D.B.2    Ko, M.S.H.3
  • 14
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • Yeung K.Y., Ruzzo W.L. Principal component analysis for clustering gene expression data. Bioinformatics 2001, 17(9):763-774.
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2
  • 15
    • 2342431962 scopus 로고    scopus 로고
    • Approximate geodesic distances reveal biologically relevant structures in microarray data
    • Nilsson J., Fioretos T., Hoglund M., Fontes M. Approximate geodesic distances reveal biologically relevant structures in microarray data. Bioinformatics 2004, 20(6):1176-1183.
    • (2004) Bioinformatics , vol.20 , Issue.6 , pp. 1176-1183
    • Nilsson, J.1    Fioretos, T.2    Hoglund, M.3    Fontes, M.4
  • 16
    • 25444512607 scopus 로고    scopus 로고
    • Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using isomap, a nonlinear algorithm
    • Dawson K., Rodriguez R.L., Malyj W. Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using isomap, a nonlinear algorithm. BMC Bioinformatics 2005, (6):195-211.
    • (2005) BMC Bioinformatics , Issue.6 , pp. 195-211
    • Dawson, K.1    Rodriguez, R.L.2    Malyj, W.3
  • 17
    • 22544434628 scopus 로고    scopus 로고
    • Mining the structural knowledge of high-dimensional medical data using isomap
    • Weng S., Zhang C., Lin Z., Zhang X. Mining the structural knowledge of high-dimensional medical data using isomap. Medical & Biological Engineering & Computing 2005, 43(3):410-412.
    • (2005) Medical & Biological Engineering & Computing , vol.43 , Issue.3 , pp. 410-412
    • Weng, S.1    Zhang, C.2    Lin, Z.3    Zhang, X.4
  • 18
    • 49249124314 scopus 로고    scopus 로고
    • Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying gene and protein expression studies
    • Lee G., Rodriguez C., Madabhushi A. Investigating the efficacy of nonlinear dimensionality reduction schemes in classifying gene and protein expression studies. IEEE/ACM Transactions on Computational Biology and Bioinformatics 2008, 5(3):368-384.
    • (2008) IEEE/ACM Transactions on Computational Biology and Bioinformatics , vol.5 , Issue.3 , pp. 368-384
    • Lee, G.1    Rodriguez, C.2    Madabhushi, A.3
  • 20
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • Tenenbaum J.B., de Silva V., Langford J.C. A global geometric framework for nonlinear dimensionality reduction. Science 2000, 290(22):2319-2323.
    • (2000) Science , vol.290 , Issue.22 , pp. 2319-2323
    • Tenenbaum, J.B.1    de Silva, V.2    Langford, J.C.3
  • 24
    • 77955568863 scopus 로고    scopus 로고
    • A survey of dimension reduction techniques, Technical Report, U.S. Department of Energy,
    • I.K. Fodor, A survey of dimension reduction techniques, Technical Report, U.S. Department of Energy, 2002.
    • (2002)
    • Fodor, I.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.