메뉴 건너뛰기




Volumn 82, Issue 2, 2010, Pages

Universality of the glassy transitions in the two-dimensional ±j Ising model

Author keywords

[No Author keywords available]

Indexed keywords

BASIC VARIABLES; BIMODAL DISTRIBUTION; CRITICAL BEHAVIOR; FERROMAGNETIC TRANSITIONS; FINITE SIZE SCALING; FINITE VOLUME; FREEZING PHENOMENA; GLASSY SYSTEMS; HAMILTONIAN SPECTRUM; ISING SPIN GLASS; LOW TEMPERATURES; MAGNETIC MODES; MONTE CARLO SIMULATION; RENORMALIZATION GROUP; SQUARE-LATTICE; TRANSITION LINES; ZERO TEMPERATURES;

EID: 77955561823     PISSN: 15393755     EISSN: 15502376     Source Type: Journal    
DOI: 10.1103/PhysRevE.82.021106     Document Type: Article
Times cited : (22)

References (47)
  • 3
    • 3142587097 scopus 로고    scopus 로고
    • in edited by H. T. Diep (World Scientific, Singapore
    • N. Kawashima and H. Rieger, in Frustrated Spin Systems, edited by, H. T. Diep, (World Scientific, Singapore, 2004), 539
    • (2004) Frustrated Spin Systems , pp. 539
    • Kawashima, N.1    Rieger, H.2
  • 4
    • 77955562039 scopus 로고    scopus 로고
    • e-print arXiv:cond-mat/0312432.
    • e-print arXiv:cond-mat/0312432.
  • 7
    • 37649030036 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.70.134425
    • C. Amoruso and A. K. Hartmann, Phys. Rev. B 70, 134425 (2004). 10.1103/PhysRevB.70.134425
    • (2004) Phys. Rev. B , vol.70 , pp. 134425
    • Amoruso, C.1    Hartmann, A.K.2
  • 8
  • 9
    • 77955588130 scopus 로고    scopus 로고
    • The Nishimori line is defined by the equation T= TN (p) =2/ [lnp-ln (1-p ) ]. Along this line several rigorous results can be proved, such as the equality of the magnetic and overlap two-point correlations.
    • The Nishimori line is defined by the equation T = T N (p) = 2 / [ln p - ln (1 - p)]. Along this line several rigorous results can be proved, such as the equality of the magnetic and overlap two-point correlations.
  • 11
    • 62749130849 scopus 로고    scopus 로고
    • 10.1103/PhysRevE.79.021129
    • M. Ohzeki, Phys. Rev. E 79, 021129 (2009). 10.1103/PhysRevE.79.021129
    • (2009) Phys. Rev. e , vol.79 , pp. 021129
    • Ohzeki, M.1
  • 16
    • 24444461700 scopus 로고
    • 10.1103/PhysRevB.29.4026
    • W. L. McMillan, Phys. Rev. B 29, 4026 (1984). 10.1103/PhysRevB.29.4026
    • (1984) Phys. Rev. B , vol.29 , pp. 4026
    • McMillan, W.L.1
  • 17
    • 0004078446 scopus 로고    scopus 로고
    • The presence of two different universality classes along the paramagnetic-ferromagnetic transition line is neither peculiar of the ±J model nor is it restricted to two dimensions. For instance, approximate RG calculations suggest that a similar phenomenon occurs in the three-dimensional Blume-Emery-Griffiths model with bond randomness [, 10.1103/PhysRevLett.76.4380
    • The presence of two different universality classes along the paramagnetic-ferromagnetic transition line is neither peculiar of the ± J model nor is it restricted to two dimensions. For instance, approximate RG calculations suggest that a similar phenomenon occurs in the three-dimensional Blume-Emery-Griffiths model with bond randomness [A. Falicov and A. N. Berker, Phys. Rev. Lett. 76, 4380 (1996)]. 10.1103/PhysRevLett.76.4380
    • (1996) Phys. Rev. Lett. , vol.76 , pp. 4380
    • Falicov, A.1    Berker, A.N.2
  • 21
    • 0000278150 scopus 로고    scopus 로고
    • 10.1007/PL00011151
    • J. Houdayer, Eur. Phys. J. B 22, 479 (2001). 10.1007/PL00011151
    • (2001) Eur. Phys. J. B , vol.22 , pp. 479
    • Houdayer, J.1
  • 22
    • 77955587080 scopus 로고    scopus 로고
    • In the parallel-tempering runs, we divided the interval between Tmin and Tmax in NT -1 intervals chosen so that the exchange acceptance between adjacent temperatures is roughly constant. Typically we had: NT =3 for L=8, NT =3-4 for L=12, NT =4-5 for L=16, NT =8 for L=24, NT =12 and 26 for L=32, NT =9, 10, 11, and 33 for L=48, and NT =12, 14, and 33 for L=64.
    • In the parallel-tempering runs, we divided the interval between T min and T max in N T - 1 intervals chosen so that the exchange acceptance between adjacent temperatures is roughly constant. Typically we had: N T = 3 for L = 8, N T = 3 - 4 for L = 12, N T = 4 - 5 for L = 16, N T = 8 for L = 24, N T = 12 and 26 for L = 32, N T = 9, 10, 11, and 33 for L = 48, and N T = 12, 14, and 33 for L = 64.
  • 23
    • 0001155268 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.64.180404
    • A. K. Hartmann and A. P. Young, Phys. Rev. B 64, 180404 (R) (2001). 10.1103/PhysRevB.64.180404
    • (2001) Phys. Rev. B , vol.64 , pp. 180404
    • Hartmann, A.K.1    Young, A.P.2
  • 27
    • 45849154620 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.70.014418
    • J. Houdayer and A. K. Hartman, Phys. Rev. B 70, 014418 (2004). 10.1103/PhysRevB.70.014418
    • (2004) Phys. Rev. B , vol.70 , pp. 014418
    • Houdayer, J.1    Hartman, A.K.2
  • 29
    • 28644433074 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.71.134404
    • H. G. Katzgraber and L. W. Lee, Phys. Rev. B 71, 134404 (2005). 10.1103/PhysRevB.71.134404
    • (2005) Phys. Rev. B , vol.71 , pp. 134404
    • Katzgraber, H.G.1    Lee, L.W.2
  • 32
    • 42449125735 scopus 로고    scopus 로고
    • 10.1103/PhysRevB.77.144418
    • A. K. Hartmann, Phys. Rev. B 77, 144418 (2008). 10.1103/PhysRevB.77. 144418
    • (2008) Phys. Rev. B , vol.77 , pp. 144418
    • Hartmann, A.K.1
  • 34
    • 36148934592 scopus 로고    scopus 로고
    • The most accurate estimates of ν have been obtained by computing the stiffness exponent θ=-1/ν at T=0 in models with continuous distributions. We mention θ=-0.281 (2) (Ref.), θ=-0.282 (2) (Ref.), θ=-0.282 (3) (Ref.), and θ=-0.282 (4) (Ref.) obtained by using the Ising glass model with a Gaussian distribution for the couplings, and θ=-0.275 (5) [, 10.1103/PhysRevB.76.174423] obtained in the random-anisotropy model in the strong-anisotropy limit, whose glassy critical behavior is in the same universality class. The stiffness exponent is instead not related to ν in the case of discrete distributions with quantized Hamiltonian spectrum. Finite-temperature estimates of ν are reported in Refs..
    • The most accurate estimates of ν have been obtained by computing the stiffness exponent θ = - 1 / ν at T = 0 in models with continuous distributions. We mention θ = - 0.281 (2) (Ref.), θ = - 0.282 (2) (Ref.), θ = - 0.282 (3) (Ref.), and θ = - 0.282 (4) (Ref.) obtained by using the Ising glass model with a Gaussian distribution for the couplings, and θ = - 0.275 (5) [F. Liers, J. Lukic, E. Marinari, A. Pelissetto, and E. Vicari, Phys. Rev. B 76, 174423 (2007) 10.1103/PhysRevB.76.174423
    • (2007) Phys. Rev. B , vol.76 , pp. 174423
    • Liers, F.1    Lukic, J.2    Marinari, E.3    Pelissetto, A.4    Vicari, E.5
  • 35
    • 0019066243 scopus 로고
    • 10.1051/jphyslet:019800041018044700
    • G. Toulouse, J. Phys. Lett. 41, 447 (1980). 10.1051/jphyslet: 019800041018044700
    • (1980) J. Phys. Lett. , vol.41 , pp. 447
    • Toulouse, G.1
  • 39
    • 0043230411 scopus 로고
    • 10.1103/RevModPhys.58.801
    • K. Binder and A. P. Young, Rev. Mod. Phys. 58, 801 (1986). 10.1103/RevModPhys.58.801
    • (1986) Rev. Mod. Phys. , vol.58 , pp. 801
    • Binder, K.1    Young, A.P.2
  • 40
    • 0002795650 scopus 로고
    • in Proceedings of the 23rd Symposium on the Interface, edited by E. M. Keramidas (Interface Foundation, Fairfax Station
    • C. J. Geyer, in Computer Science and Statistics, Proceedings of the 23rd Symposium on the Interface, edited by, E. M. Keramidas, (Interface Foundation, Fairfax Station, 1991), p. 156
    • (1991) Computer Science and Statistics , pp. 156
    • Geyer, C.J.1
  • 45
    • 55849118791 scopus 로고    scopus 로고
    • 10.1103/PhysRevLett.101.197205
    • T. Jörg and H. G. Katzgraber, Phys. Rev. Lett. 101, 197205 (2008). 10.1103/PhysRevLett.101.197205
    • (2008) Phys. Rev. Lett. , vol.101 , pp. 197205
    • Jörg, T.1    Katzgraber, H.G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.