-
1
-
-
84949479246
-
On the surprising behavior of distance metrics in high dimensional spaces
-
C. Aggarwal, A. Hinneburg, and D. Keim On the surprising behavior of distance metrics in high dimensional spaces Lect. Notes Comput. Sci. 1973 2001 420 434
-
(2001)
Lect. Notes Comput. Sci.
, vol.1973
, pp. 420-434
-
-
Aggarwal, C.1
Hinneburg, A.2
Keim, D.3
-
2
-
-
0043278893
-
Laplacian eigenmaps and spectral techniques for embedding and clustering
-
M. Belkin, and P. Niyogi Laplacian eigenmaps and spectral techniques for embedding and clustering Adv. Neural Inform. Process. Systems 14 2001 585 591
-
(2001)
Adv. Neural Inform. Process. Systems
, vol.14
, pp. 585-591
-
-
Belkin, M.1
Niyogi, P.2
-
3
-
-
0347963789
-
GTM: The generative topographic mapping
-
C. Bishop, M. Svensén, and C. Williams GTM: The generative topographic mapping Neural Comput. 10 1 1998 215 234
-
(1998)
Neural Comput.
, vol.10
, Issue.1
, pp. 215-234
-
-
Bishop, C.1
Svensén, M.2
Williams, C.3
-
4
-
-
0142025120
-
Data dimensionality estimation methods: A survey
-
F. Camastra Data dimensionality estimation methods: A survey Pattern Recognition 36 12 2003 2945 2954
-
(2003)
Pattern Recognition
, vol.36
, Issue.12
, pp. 2945-2954
-
-
Camastra, F.1
-
5
-
-
0035425712
-
Intrinsic dimension estimation of data: An approach based on Grassberger-Procacciaś algorithm
-
F. Camastra, and A. Vinciarelli Intrinsic dimension estimation of data: An approach based on Grassberger-Procacciaś algorithm Neural Process. Lett. 14 1 2001 27 34
-
(2001)
Neural Process. Lett.
, vol.14
, Issue.1
, pp. 27-34
-
-
Camastra, F.1
Vinciarelli, A.2
-
6
-
-
0026116468
-
Orthogonal least squares learning algorithm for radial basis function networks
-
S. Chen, C. Cowan, and P. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Trans. Neural Networks 2 2 1991 302 309
-
(1991)
IEEE Trans. Neural Networks
, vol.2
, Issue.2
, pp. 302-309
-
-
Chen, S.1
Cowan, C.2
Grant, P.3
-
8
-
-
3543131272
-
Geodesic entropic graphs for dimension and entropy estimation in manifold learning
-
J. Costa, and A. Hero Geodesic entropic graphs for dimension and entropy estimation in manifold learning IEEE Trans. Signal Process. 52 8 2004 2210 2221
-
(2004)
IEEE Trans. Signal Process.
, vol.52
, Issue.8
, pp. 2210-2221
-
-
Costa, J.1
Hero, A.2
-
10
-
-
35248860116
-
Supervised locally linear embedding
-
D. De Ridder, O. Kouropteva, O. Okun, M. Pietikainen, and R. Duin Supervised locally linear embedding Lect. Notes Comput. Sci. 2714 2003 333 341
-
(2003)
Lect. Notes Comput. Sci.
, vol.2714
, pp. 333-341
-
-
De Ridder, D.1
Kouropteva, O.2
Okun, O.3
Pietikainen, M.4
Duin, R.5
-
11
-
-
84899009769
-
Global versus local methods in nonlinear dimensionality reduction
-
V. De Silva, and J. Tenenbaum Global versus local methods in nonlinear dimensionality reduction Adv. Neural Inform. Process. Systems 15 2003 705 712
-
(2003)
Adv. Neural Inform. Process. Systems
, vol.15
, pp. 705-712
-
-
De Silva, V.1
Tenenbaum, J.2
-
13
-
-
0037948870
-
Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
-
D. Donoho, and C. Grimes Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data Proc. Natl. Acad. Sci. 100 10 2003 5591 5596
-
(2003)
Proc. Natl. Acad. Sci.
, vol.100
, Issue.10
, pp. 5591-5596
-
-
Donoho, D.1
Grimes, C.2
-
14
-
-
34047148915
-
Nonlinear manifold learning for dynamic shape and dynamic appearance
-
A. Elgammal, and C. Lee Nonlinear manifold learning for dynamic shape and dynamic appearance Comput. Vision and Image Understanding 106 1 2007 31 46
-
(2007)
Comput. Vision and Image Understanding
, vol.106
, Issue.1
, pp. 31-46
-
-
Elgammal, A.1
Lee, C.2
-
16
-
-
0015011520
-
An algorithm for finding intrinsic dimensionality of data
-
K. Fukunaga, and D.R. Olsen An algorithm for finding intrinsic dimensionality of data IEEE Trans. Comput. C-20 2 1971 176 183
-
(1971)
IEEE Trans. Comput.
, vol.C20
, Issue.2
, pp. 176-183
-
-
Fukunaga, K.1
Olsen, D.R.2
-
18
-
-
63649089799
-
Local procrustes for manifold embedding: A measure of embedding quality and embedding algorithms
-
Y. Goldberg, and Y. Ritov Local procrustes for manifold embedding: A measure of embedding quality and embedding algorithms Machine Learning 77 1 2009 1 25
-
(2009)
Machine Learning
, vol.77
, Issue.1
, pp. 1-25
-
-
Goldberg, Y.1
Ritov, Y.2
-
20
-
-
13444283482
-
Learning an image manifold for retrieval
-
He, X.; Ma, W.; Zhang, H.; 2004. Learning an image manifold for retrieval. In: Proc. ACM Multimedia, pp. 17-23.
-
(2004)
Proc. ACM Multimedia
, pp. 17-23
-
-
He, X.1
Ma, W.2
Zhang, H.3
-
21
-
-
33745881038
-
Neighborhood preserving embedding
-
He, X.; Cai, D.; Yan, S.; Zhang, H.; 2005. Neighborhood preserving embedding. In: Proc. IEEE Internat. Conf. on Computer Vision, vol. 2, pp. 1208-1213.
-
(2005)
Proc. IEEE Internat. Conf. on Computer Vision
, vol.2
, pp. 1208-1213
-
-
He, X.1
Cai, D.2
Yan, S.3
Zhang, H.4
-
22
-
-
84947786689
-
Nearest neighbors in random subspaces
-
T. Ho Nearest neighbors in random subspaces Lect. Notes Comput. Sci. 1451 1998 640 648
-
(1998)
Lect. Notes Comput. Sci.
, vol.1451
, pp. 640-648
-
-
Ho, T.1
-
23
-
-
0036361823
-
A local search approximation algorithm for k-means clustering
-
Kanungo, T.; Mount, D.; Netanyahu, N.; Piatko, C.; Silverman, R.; Wu, A.; 2002. A local search approximation algorithm for k-means clustering. In: Proc. 18th Annual Symposium on Computational Geometry, pp. 10-18.
-
(2002)
Proc. 18th Annual Symposium on Computational Geometry
, pp. 10-18
-
-
Kanungo, T.1
Mount, D.2
Netanyahu, N.3
Piatko, C.4
Silverman, R.5
Wu, A.6
-
24
-
-
67651217688
-
Selection of the number of neighbours of each data point for the locally linear embedding algorithm
-
R. Karbauskait, O. Kurasova, and G. Dzemyda Selection of the number of neighbours of each data point for the locally linear embedding algorithm Inform. Technol. Control 36 4 2007 359 364
-
(2007)
Inform. Technol. Control
, vol.36
, Issue.4
, pp. 359-364
-
-
Karbauskait, R.1
Kurasova, O.2
Dzemyda, G.3
-
25
-
-
84898957854
-
Intrinsic dimension estimation using packing numbers
-
B. Kegl Intrinsic dimension estimation using packing numbers Adv. Neural Inform. Process. Systems 15 2003 681 688
-
(2003)
Adv. Neural Inform. Process. Systems
, vol.15
, pp. 681-688
-
-
Kegl, B.1
-
26
-
-
36248950635
-
Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique
-
E. Kokiopoulou, and Y. Saad Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique IEEE Trans. Pattern Anal. Machine Intell. 29 12 2007 2143 2156
-
(2007)
IEEE Trans. Pattern Anal. Machine Intell.
, vol.29
, Issue.12
, pp. 2143-2156
-
-
Kokiopoulou, E.1
Saad, Y.2
-
27
-
-
11144348146
-
Selection of the optimal parameter value for the locally linear embedding algorithm
-
Kouropteva, O.; Okun, O.; Pietikainen, M.; 2002. Selection of the optimal parameter value for the locally linear embedding algorithm. In: Proc. 1st Internat. Conf. on Fuzzy Systems and Knowledge Discovery, Singapore, pp. 359-363.
-
(2002)
Proc. 1st Internat. Conf. on Fuzzy Systems and Knowledge Discovery, Singapore
, pp. 359-363
-
-
Kouropteva, O.1
Okun, O.2
Pietikainen, M.3
-
29
-
-
84898980901
-
Gaussian process latent variable models for visualisation of high dimensional data
-
N. Lawrence Gaussian process latent variable models for visualisation of high dimensional data Adv. Neural Inform. Process. Systems 2004 16
-
(2004)
Adv. Neural Inform. Process. Systems
, pp. 16
-
-
Lawrence, N.1
-
32
-
-
77955553864
-
Automatic configuration of spectral dimensionality reduction methods for 3D human pose estimation
-
Lewandowski, M.; Makris, D.; Nebel, J.-C.; 2009. Automatic configuration of spectral dimensionality reduction methods for 3D human pose estimation. In: Visual Surveillance.
-
(2009)
Visual Surveillance
-
-
Lewandowski, M.1
Makris, D.2
Nebel, J.-C.3
-
33
-
-
0025490985
-
Networks for approximation and learning
-
T. Poggio, F. Girosi, and C. MIT Networks for approximation and learning Proc. IEEE 78 9 1990 1481 1497
-
(1990)
Proc. IEEE
, vol.78
, Issue.9
, pp. 1481-1497
-
-
Poggio, T.1
Girosi, F.2
Mit, C.3
-
34
-
-
0034704222
-
Nonlinear dimensionality reduction by locally linear embedding
-
S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2323-2326
-
-
Roweis, S.1
Saul, L.2
-
35
-
-
0028734063
-
Parameterisation of a stochastic model for human face identification
-
Samaria, F.; Harter, A.; 1994. Parameterisation of a stochastic model for human face identification. In: Workshop on Applications of Computer Vision (http://www.cs.toronto.edu/∼roweis/data.html ) (last accessed 30.10.09).
-
(1994)
Workshop on Applications of Computer Vision
-
-
Samaria, F.1
Harter, A.2
-
36
-
-
33646162415
-
Selection of the optimal parameter value for the Isomap algorithm
-
O. Samko, A. Marshall, and P. Rosin Selection of the optimal parameter value for the Isomap algorithm Pattern Recognition Lett. 27 9 2006 968 979
-
(2006)
Pattern Recognition Lett.
, vol.27
, Issue.9
, pp. 968-979
-
-
Samko, O.1
Marshall, A.2
Rosin, P.3
-
37
-
-
0034704229
-
A global geometric framework for nonlinear dimensionality reduction
-
J. Tenenbaum, V. Silva, and J. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
-
(2000)
Science
, vol.290
, Issue.5500
, pp. 2319-2323
-
-
Tenenbaum, J.1
Silva, V.2
Langford, J.3
-
38
-
-
67349259601
-
Combining local and global information for nonlinear dimensionality reduction
-
Q. Wang, and J. Li Combining local and global information for nonlinear dimensionality reduction Neurocomputing 72 10-12 2009 2235 2241
-
(2009)
Neurocomputing
, vol.72
, Issue.1012
, pp. 2235-2241
-
-
Wang, Q.1
Li, J.2
-
39
-
-
0027629412
-
Rival penalized competitive learning for clustering analysis, RBFnet, and curve detection
-
L. Xu, A. Krzyzak, and E. Oja Rival penalized competitive learning for clustering analysis, RBFnet, and curve detection IEEE Trans. Neural Networks 4 4 1993 636 649
-
(1993)
IEEE Trans. Neural Networks
, vol.4
, Issue.4
, pp. 636-649
-
-
Xu, L.1
Krzyzak, A.2
Oja, E.3
-
40
-
-
77955552386
-
Discriminant isometric mapping for face recognition
-
M. Yang Discriminant isometric mapping for face recognition Lect. Notes Comput. Sci. 2626 2003 470 480
-
(2003)
Lect. Notes Comput. Sci.
, vol.2626
, pp. 470-480
-
-
Yang, M.1
-
41
-
-
60349128863
-
Growing locally linear embedding for manifold learning
-
J. Yin, D. Hu, and Z. Zhou Growing locally linear embedding for manifold learning J. Pattern Recognition Res. 2 1 2008 1 16
-
(2008)
J. Pattern Recognition Res.
, vol.2
, Issue.1
, pp. 1-16
-
-
Yin, J.1
Hu, D.2
Zhou, Z.3
-
42
-
-
84864069440
-
Mlle: Modified locally linear embedding using multiple weights
-
Z. Zhang, and J. Wang Mlle: Modified locally linear embedding using multiple weights Adv. Neural Inform. Process. Systems 19 2007 1593 1600
-
(2007)
Adv. Neural Inform. Process. Systems
, vol.19
, pp. 1593-1600
-
-
Zhang, Z.1
Wang, J.2
-
43
-
-
56849095013
-
Semi-supervised Laplacian eigenmaps for dimensionality reduction
-
F. Zheng, N. Chen, and L. Li Semi-supervised Laplacian eigenmaps for dimensionality reduction Wavelet Anal. Pattern Recognition 2 2008 843 849
-
(2008)
Wavelet Anal. Pattern Recognition
, vol.2
, pp. 843-849
-
-
Zheng, F.1
Chen, N.2
Li, L.3
|