메뉴 건너뛰기




Volumn 31, Issue 12, 2010, Pages 1720-1727

Automatic configuration of spectral dimensionality reduction methods

Author keywords

Dimensionality reduction; Isomap; Laplacian Eigenmaps; Locally Linear Embedding; Mutual information; Radial Basis Function network

Indexed keywords

AUTOMATIC CONFIGURATION; CLUSTER ALGORITHMS; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; LAPLACIAN EIGENMAPS; LEARNING PROCESS; LOCALLY LINEAR EMBEDDING; MUTUAL INFORMATIONS; REAL DATA SETS;

EID: 77955559751     PISSN: 01678655     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.patrec.2010.05.025     Document Type: Article
Times cited : (9)

References (43)
  • 1
    • 84949479246 scopus 로고    scopus 로고
    • On the surprising behavior of distance metrics in high dimensional spaces
    • C. Aggarwal, A. Hinneburg, and D. Keim On the surprising behavior of distance metrics in high dimensional spaces Lect. Notes Comput. Sci. 1973 2001 420 434
    • (2001) Lect. Notes Comput. Sci. , vol.1973 , pp. 420-434
    • Aggarwal, C.1    Hinneburg, A.2    Keim, D.3
  • 2
    • 0043278893 scopus 로고    scopus 로고
    • Laplacian eigenmaps and spectral techniques for embedding and clustering
    • M. Belkin, and P. Niyogi Laplacian eigenmaps and spectral techniques for embedding and clustering Adv. Neural Inform. Process. Systems 14 2001 585 591
    • (2001) Adv. Neural Inform. Process. Systems , vol.14 , pp. 585-591
    • Belkin, M.1    Niyogi, P.2
  • 3
    • 0347963789 scopus 로고    scopus 로고
    • GTM: The generative topographic mapping
    • C. Bishop, M. Svensén, and C. Williams GTM: The generative topographic mapping Neural Comput. 10 1 1998 215 234
    • (1998) Neural Comput. , vol.10 , Issue.1 , pp. 215-234
    • Bishop, C.1    Svensén, M.2    Williams, C.3
  • 4
    • 0142025120 scopus 로고    scopus 로고
    • Data dimensionality estimation methods: A survey
    • F. Camastra Data dimensionality estimation methods: A survey Pattern Recognition 36 12 2003 2945 2954
    • (2003) Pattern Recognition , vol.36 , Issue.12 , pp. 2945-2954
    • Camastra, F.1
  • 5
    • 0035425712 scopus 로고    scopus 로고
    • Intrinsic dimension estimation of data: An approach based on Grassberger-Procacciaś algorithm
    • F. Camastra, and A. Vinciarelli Intrinsic dimension estimation of data: An approach based on Grassberger-Procacciaś algorithm Neural Process. Lett. 14 1 2001 27 34
    • (2001) Neural Process. Lett. , vol.14 , Issue.1 , pp. 27-34
    • Camastra, F.1    Vinciarelli, A.2
  • 6
    • 0026116468 scopus 로고
    • Orthogonal least squares learning algorithm for radial basis function networks
    • S. Chen, C. Cowan, and P. Grant Orthogonal least squares learning algorithm for radial basis function networks IEEE Trans. Neural Networks 2 2 1991 302 309
    • (1991) IEEE Trans. Neural Networks , vol.2 , Issue.2 , pp. 302-309
    • Chen, S.1    Cowan, C.2    Grant, P.3
  • 7
    • 11144347688 scopus 로고    scopus 로고
    • Kernel isomap
    • H. Choi, and S. Choi Kernel isomap IET Electron. Lett. 40 25 2004 1612 1613
    • (2004) IET Electron. Lett. , vol.40 , Issue.25 , pp. 1612-1613
    • Choi, H.1    Choi, S.2
  • 8
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic entropic graphs for dimension and entropy estimation in manifold learning
    • J. Costa, and A. Hero Geodesic entropic graphs for dimension and entropy estimation in manifold learning IEEE Trans. Signal Process. 52 8 2004 2210 2221
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.8 , pp. 2210-2221
    • Costa, J.1    Hero, A.2
  • 11
    • 84899009769 scopus 로고    scopus 로고
    • Global versus local methods in nonlinear dimensionality reduction
    • V. De Silva, and J. Tenenbaum Global versus local methods in nonlinear dimensionality reduction Adv. Neural Inform. Process. Systems 15 2003 705 712
    • (2003) Adv. Neural Inform. Process. Systems , vol.15 , pp. 705-712
    • De Silva, V.1    Tenenbaum, J.2
  • 13
    • 0037948870 scopus 로고    scopus 로고
    • Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data
    • D. Donoho, and C. Grimes Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data Proc. Natl. Acad. Sci. 100 10 2003 5591 5596
    • (2003) Proc. Natl. Acad. Sci. , vol.100 , Issue.10 , pp. 5591-5596
    • Donoho, D.1    Grimes, C.2
  • 14
    • 34047148915 scopus 로고    scopus 로고
    • Nonlinear manifold learning for dynamic shape and dynamic appearance
    • A. Elgammal, and C. Lee Nonlinear manifold learning for dynamic shape and dynamic appearance Comput. Vision and Image Understanding 106 1 2007 31 46
    • (2007) Comput. Vision and Image Understanding , vol.106 , Issue.1 , pp. 31-46
    • Elgammal, A.1    Lee, C.2
  • 16
    • 0015011520 scopus 로고
    • An algorithm for finding intrinsic dimensionality of data
    • K. Fukunaga, and D.R. Olsen An algorithm for finding intrinsic dimensionality of data IEEE Trans. Comput. C-20 2 1971 176 183
    • (1971) IEEE Trans. Comput. , vol.C20 , Issue.2 , pp. 176-183
    • Fukunaga, K.1    Olsen, D.R.2
  • 18
    • 63649089799 scopus 로고    scopus 로고
    • Local procrustes for manifold embedding: A measure of embedding quality and embedding algorithms
    • Y. Goldberg, and Y. Ritov Local procrustes for manifold embedding: A measure of embedding quality and embedding algorithms Machine Learning 77 1 2009 1 25
    • (2009) Machine Learning , vol.77 , Issue.1 , pp. 1-25
    • Goldberg, Y.1    Ritov, Y.2
  • 20
    • 13444283482 scopus 로고    scopus 로고
    • Learning an image manifold for retrieval
    • He, X.; Ma, W.; Zhang, H.; 2004. Learning an image manifold for retrieval. In: Proc. ACM Multimedia, pp. 17-23.
    • (2004) Proc. ACM Multimedia , pp. 17-23
    • He, X.1    Ma, W.2    Zhang, H.3
  • 22
    • 84947786689 scopus 로고    scopus 로고
    • Nearest neighbors in random subspaces
    • T. Ho Nearest neighbors in random subspaces Lect. Notes Comput. Sci. 1451 1998 640 648
    • (1998) Lect. Notes Comput. Sci. , vol.1451 , pp. 640-648
    • Ho, T.1
  • 24
    • 67651217688 scopus 로고    scopus 로고
    • Selection of the number of neighbours of each data point for the locally linear embedding algorithm
    • R. Karbauskait, O. Kurasova, and G. Dzemyda Selection of the number of neighbours of each data point for the locally linear embedding algorithm Inform. Technol. Control 36 4 2007 359 364
    • (2007) Inform. Technol. Control , vol.36 , Issue.4 , pp. 359-364
    • Karbauskait, R.1    Kurasova, O.2    Dzemyda, G.3
  • 25
    • 84898957854 scopus 로고    scopus 로고
    • Intrinsic dimension estimation using packing numbers
    • B. Kegl Intrinsic dimension estimation using packing numbers Adv. Neural Inform. Process. Systems 15 2003 681 688
    • (2003) Adv. Neural Inform. Process. Systems , vol.15 , pp. 681-688
    • Kegl, B.1
  • 26
    • 36248950635 scopus 로고    scopus 로고
    • Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique
    • E. Kokiopoulou, and Y. Saad Orthogonal neighborhood preserving projections: A projection-based dimensionality reduction technique IEEE Trans. Pattern Anal. Machine Intell. 29 12 2007 2143 2156
    • (2007) IEEE Trans. Pattern Anal. Machine Intell. , vol.29 , Issue.12 , pp. 2143-2156
    • Kokiopoulou, E.1    Saad, Y.2
  • 29
    • 84898980901 scopus 로고    scopus 로고
    • Gaussian process latent variable models for visualisation of high dimensional data
    • N. Lawrence Gaussian process latent variable models for visualisation of high dimensional data Adv. Neural Inform. Process. Systems 2004 16
    • (2004) Adv. Neural Inform. Process. Systems , pp. 16
    • Lawrence, N.1
  • 31
  • 32
    • 77955553864 scopus 로고    scopus 로고
    • Automatic configuration of spectral dimensionality reduction methods for 3D human pose estimation
    • Lewandowski, M.; Makris, D.; Nebel, J.-C.; 2009. Automatic configuration of spectral dimensionality reduction methods for 3D human pose estimation. In: Visual Surveillance.
    • (2009) Visual Surveillance
    • Lewandowski, M.1    Makris, D.2    Nebel, J.-C.3
  • 33
    • 0025490985 scopus 로고
    • Networks for approximation and learning
    • T. Poggio, F. Girosi, and C. MIT Networks for approximation and learning Proc. IEEE 78 9 1990 1481 1497
    • (1990) Proc. IEEE , vol.78 , Issue.9 , pp. 1481-1497
    • Poggio, T.1    Girosi, F.2    Mit, C.3
  • 34
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • S. Roweis, and L. Saul Nonlinear dimensionality reduction by locally linear embedding Science 290 5500 2000 2323 2326
    • (2000) Science , vol.290 , Issue.5500 , pp. 2323-2326
    • Roweis, S.1    Saul, L.2
  • 35
    • 0028734063 scopus 로고
    • Parameterisation of a stochastic model for human face identification
    • Samaria, F.; Harter, A.; 1994. Parameterisation of a stochastic model for human face identification. In: Workshop on Applications of Computer Vision (http://www.cs.toronto.edu/∼roweis/data.html ) (last accessed 30.10.09).
    • (1994) Workshop on Applications of Computer Vision
    • Samaria, F.1    Harter, A.2
  • 36
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the Isomap algorithm
    • O. Samko, A. Marshall, and P. Rosin Selection of the optimal parameter value for the Isomap algorithm Pattern Recognition Lett. 27 9 2006 968 979
    • (2006) Pattern Recognition Lett. , vol.27 , Issue.9 , pp. 968-979
    • Samko, O.1    Marshall, A.2    Rosin, P.3
  • 37
    • 0034704229 scopus 로고    scopus 로고
    • A global geometric framework for nonlinear dimensionality reduction
    • J. Tenenbaum, V. Silva, and J. Langford A global geometric framework for nonlinear dimensionality reduction Science 290 5500 2000 2319 2323
    • (2000) Science , vol.290 , Issue.5500 , pp. 2319-2323
    • Tenenbaum, J.1    Silva, V.2    Langford, J.3
  • 38
    • 67349259601 scopus 로고    scopus 로고
    • Combining local and global information for nonlinear dimensionality reduction
    • Q. Wang, and J. Li Combining local and global information for nonlinear dimensionality reduction Neurocomputing 72 10-12 2009 2235 2241
    • (2009) Neurocomputing , vol.72 , Issue.1012 , pp. 2235-2241
    • Wang, Q.1    Li, J.2
  • 39
    • 0027629412 scopus 로고
    • Rival penalized competitive learning for clustering analysis, RBFnet, and curve detection
    • L. Xu, A. Krzyzak, and E. Oja Rival penalized competitive learning for clustering analysis, RBFnet, and curve detection IEEE Trans. Neural Networks 4 4 1993 636 649
    • (1993) IEEE Trans. Neural Networks , vol.4 , Issue.4 , pp. 636-649
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 40
    • 77955552386 scopus 로고    scopus 로고
    • Discriminant isometric mapping for face recognition
    • M. Yang Discriminant isometric mapping for face recognition Lect. Notes Comput. Sci. 2626 2003 470 480
    • (2003) Lect. Notes Comput. Sci. , vol.2626 , pp. 470-480
    • Yang, M.1
  • 41
    • 60349128863 scopus 로고    scopus 로고
    • Growing locally linear embedding for manifold learning
    • J. Yin, D. Hu, and Z. Zhou Growing locally linear embedding for manifold learning J. Pattern Recognition Res. 2 1 2008 1 16
    • (2008) J. Pattern Recognition Res. , vol.2 , Issue.1 , pp. 1-16
    • Yin, J.1    Hu, D.2    Zhou, Z.3
  • 42
    • 84864069440 scopus 로고    scopus 로고
    • Mlle: Modified locally linear embedding using multiple weights
    • Z. Zhang, and J. Wang Mlle: Modified locally linear embedding using multiple weights Adv. Neural Inform. Process. Systems 19 2007 1593 1600
    • (2007) Adv. Neural Inform. Process. Systems , vol.19 , pp. 1593-1600
    • Zhang, Z.1    Wang, J.2
  • 43
    • 56849095013 scopus 로고    scopus 로고
    • Semi-supervised Laplacian eigenmaps for dimensionality reduction
    • F. Zheng, N. Chen, and L. Li Semi-supervised Laplacian eigenmaps for dimensionality reduction Wavelet Anal. Pattern Recognition 2 2008 843 849
    • (2008) Wavelet Anal. Pattern Recognition , vol.2 , pp. 843-849
    • Zheng, F.1    Chen, N.2    Li, L.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.