메뉴 건너뛰기




Volumn 137, Issue 5, 2009, Pages 1640-1654

Sampling errors in ensemble Kalman filtering. Part II: Application to a barotropic model

Author keywords

[No Author keywords available]

Indexed keywords

ANALYTIC EXPRESSIONS; BAROTROPIC; BAROTROPIC MODELS; COMPUTATIONAL COSTS; ENSEMBLE KALMAN FILTER; ENSEMBLE KALMAN FILTERING; QUASI-GEOSTROPHIC MODEL; SAMPLING ERRORS; THEORETICAL RESULT;

EID: 68249140015     PISSN: 00270644     EISSN: None     Source Type: Journal    
DOI: 10.1175/2008MWR2685.1     Document Type: Article
Times cited : (8)

References (29)
  • 1
    • 0035655814 scopus 로고    scopus 로고
    • An ensemble adjustment Kalman filter for data assimilation
    • Anderson, J. L., 2001: An ensemble adjustment Kalman filter for data assimilation. Mon. Wea. Rev., 129, 2884-2903.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 2884-2903
    • Anderson, J.L.1
  • 2
    • 0033500692 scopus 로고    scopus 로고
    • A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts
    • Anderson, J. L., and S. L. Anderson, 1999: A Monte Carlo implementation of the nonlinear filtering problem to produce ensemble assimilations and forecasts. Mon. Wea. Rev., 127, 2741-2758.
    • (1999) Mon. Wea. Rev , vol.127 , pp. 2741-2758
    • Anderson, J.L.1    Anderson, S.L.2
  • 3
    • 0028595111 scopus 로고
    • A dynamical estimation of forecast error covariances in an assimilation system
    • Bouttier, F., 1994: A dynamical estimation of forecast error covariances in an assimilation system. Mon. Wea. Rev., 122, 2376-2390.
    • (1994) Mon. Wea. Rev , vol.122 , pp. 2376-2390
    • Bouttier, F.1
  • 4
    • 33645278639 scopus 로고    scopus 로고
    • Assimilation with an ensemble Kalman filter of synthetic radial wind data in anisotropic turbulence: Perfect model experiments
    • Charron, M., P. L. Houtekamer, and P. Bartello, 2006: Assimilation with an ensemble Kalman filter of synthetic radial wind data in anisotropic turbulence: Perfect model experiments. Mon. Wea. Rev., 134, 618-637.
    • (2006) Mon. Wea. Rev , vol.134 , pp. 618-637
    • Charron, M.1    Houtekamer, P.L.2    Bartello, P.3
  • 5
    • 0027047114 scopus 로고
    • Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model
    • Evensen, G., 1992: Using the extended Kalman filter with a multilayer quasi-geostrophic ocean model. J. Geophys. Res., 97 (C11), 17 905-17 924.
    • (1992) J. Geophys. Res , vol.97 , Issue.C11
    • Evensen, G.1
  • 6
    • 84884550570 scopus 로고    scopus 로고
    • The ensemble Kalman filter:Theoretical formulation and practical implementation
    • Evensen, G., 2003: The ensemble Kalman filter:Theoretical formulation and practical implementation. Ocean Dyn., 53, 343-367.
    • (2003) Ocean Dyn , vol.53 , pp. 343-367
    • Evensen, G.1
  • 7
    • 33750502680 scopus 로고    scopus 로고
    • Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants
    • Furrer, R., and T. Bengtsson, 2007: Estimation of high-dimensional prior and posterior covariance matrices in Kalman filter variants. J. Multivariate Anal., 98, 227-255.
    • (2007) J. Multivariate Anal , vol.98 , pp. 227-255
    • Furrer, R.1    Bengtsson, T.2
  • 8
    • 0027839236 scopus 로고
    • Assimilation of simulated wind lidar data with a Kalman filter
    • Gauthier, P., P. Courtier, and P. Moll, 1993: Assimilation of simulated wind lidar data with a Kalman filter. Mon. Wea. Rev., 121, 1803-1820.
    • (1993) Mon. Wea. Rev , vol.121 , pp. 1803-1820
    • Gauthier, P.1    Courtier, P.2    Moll, P.3
  • 9
    • 0033792589 scopus 로고    scopus 로고
    • A hybrid ensemble Kalman filter - 3D variational analysis scheme
    • Hamill, T. M., and C. Snyder, 2000: A hybrid ensemble Kalman filter - 3D variational analysis scheme. Mon. Wea. Rev., 128, 2905-2919.
    • (2000) Mon. Wea. Rev , vol.128 , pp. 2905-2919
    • Hamill, T.M.1    Snyder, C.2
  • 10
    • 27744494106 scopus 로고    scopus 로고
    • Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches
    • Hamill, T. M., and J. S. Whitaker, 2005: Accounting for the error due to unresolved scales in ensemble data assimilation: A comparison of different approaches. Mon. Wea. Rev., 133, 3132-3147.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 3132-3147
    • Hamill, T.M.1    Whitaker, J.S.2
  • 11
    • 0035506430 scopus 로고    scopus 로고
    • Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
    • Hamill, T. M., J. S. Whitaker, and C. Snyder, 2001: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter. Mon. Wea. Rev., 129, 2776-2790.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 2776-2790
    • Hamill, T.M.1    Whitaker, J.S.2    Snyder, C.3
  • 12
    • 0032024819 scopus 로고    scopus 로고
    • Data assimilation using an ensemble Kalman filter technique
    • Houtekamer, P. L., and H. L. Mitchell, 1998: Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 126, 796-811.
    • (1998) Mon. Wea. Rev , vol.126 , pp. 796-811
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 13
    • 0035129828 scopus 로고    scopus 로고
    • A sequential ensemble Kalman filter for atmospheric data assimilation
    • Houtekamer, P. L., and H. L. Mitchell, 2001: A sequential ensemble Kalman filter for atmospheric data assimilation. Mon. Wea. Rev., 129, 123-137.
    • (2001) Mon. Wea. Rev , vol.129 , pp. 123-137
    • Houtekamer, P.L.1    Mitchell, H.L.2
  • 16
    • 35448950949 scopus 로고    scopus 로고
    • Experimental implementation of an ensemble adjustment filter for an intermediate ENSO model
    • Karspeck, A. R., and J. L. Anderson, 2007: Experimental implementation of an ensemble adjustment filter for an intermediate ENSO model. J. Climate, 20, 4638-4658.
    • (2007) J. Climate , vol.20 , pp. 4638-4658
    • Karspeck, A.R.1    Anderson, J.L.2
  • 17
    • 4444303259 scopus 로고    scopus 로고
    • Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth
    • Lawson, W. G., and J. A. Hansen, 2004: Implications of stochastic and deterministic filters as ensemble-based data assimilation methods in varying regimes of error growth. Mon. Wea. Rev., 132, 1966-1981.
    • (2004) Mon. Wea. Rev , vol.132 , pp. 1966-1981
    • Lawson, W.G.1    Hansen, J.A.2
  • 18
    • 0036853557 scopus 로고    scopus 로고
    • Ensemble size, balance, and model-error representation in an ensemble Kalman filter
    • Mitchell, H. L., P. L. Houtekamer, and G. Pellerin, 2002: Ensemble size, balance, and model-error representation in an ensemble Kalman filter. Mon. Wea. Rev., 130, 2791-2808.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 2791-2808
    • Mitchell, H.L.1    Houtekamer, P.L.2    Pellerin, G.3
  • 19
    • 0015198248 scopus 로고
    • Numerical simulation of incompressible flow within simple boundaries (I). Galerkin (spectral) representations
    • Orszag, S. A., 1971: Numerical simulation of incompressible flow within simple boundaries (I). Galerkin (spectral) representations. Stud. Appl. Math., 50, 293-327.
    • (1971) Stud. Appl. Math , vol.50 , pp. 293-327
    • Orszag, S.A.1
  • 20
    • 8844258829 scopus 로고    scopus 로고
    • A local ensemble Kalman filter for atmospheric data assimilation
    • Ott, E., and Coauthors, 2004: A local ensemble Kalman filter for atmospheric data assimilation. Tellus, 56A, 415-428.
    • (2004) Tellus , vol.56 A , pp. 415-428
    • Ott, E.1
  • 21
    • 0031742114 scopus 로고    scopus 로고
    • A singular evolutive extended Kalman filter for data assimilation in oceanography
    • Pham, D. T., J. Verron, and M. C. Roubaud, 1998: A singular evolutive extended Kalman filter for data assimilation in oceanography. J. Mar. Syst., 16, 323-340.
    • (1998) J. Mar. Syst , vol.16 , pp. 323-340
    • Pham, D.T.1    Verron, J.2    Roubaud, M.C.3
  • 22
    • 53249135012 scopus 로고    scopus 로고
    • Sampling errors in ensemble Kalman filtering. Part I: Theory
    • Sacher, W., and P. Bartello, 2008: Sampling errors in ensemble Kalman filtering. Part I: Theory. Mon. Wea. Rev., 136, 3035-3049.
    • (2008) Mon. Wea. Rev , vol.136 , pp. 3035-3049
    • Sacher, W.1    Bartello, P.2
  • 23
    • 3142655938 scopus 로고    scopus 로고
    • Extending the limits of ensemble forecast verification with the minimum spanning tree
    • Smith, L. A., and J. A. Hansen, 2004: Extending the limits of ensemble forecast verification with the minimum spanning tree. Mon. Wea. Rev., 132, 1522-1528.
    • (2004) Mon. Wea. Rev , vol.132 , pp. 1522-1528
    • Smith, L.A.1    Hansen, J.A.2
  • 24
    • 0141571533 scopus 로고    scopus 로고
    • Assimilation of simulated Doppler radar observations with an ensemble Kalman filter
    • Snyder, C., and F. Zhang, 2003: Assimilation of simulated Doppler radar observations with an ensemble Kalman filter. Mon. Wea. Rev., 131, 1663-1677.
    • (2003) Mon. Wea. Rev , vol.131 , pp. 1663-1677
    • Snyder, C.1    Zhang, F.2
  • 25
    • 0029505271 scopus 로고
    • Four-dimensional data assimilation with awide range of scales
    • Tanguay, M., P. Bartello, and P. Gauthier, 1995: Four-dimensional data assimilation with awide range of scales. Tellus, 47A, 974-997.
    • (1995) Tellus , vol.47 A , pp. 974-997
    • Tanguay, M.1    Bartello, P.2    Gauthier, P.3
  • 27
    • 24144494208 scopus 로고    scopus 로고
    • Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments
    • Tong, M., and M. Xue, 2005: Ensemble Kalman filter assimilation of Doppler radar data with a compressible nonhydrostatic model: OSS experiments. Mon. Wea. Rev., 133, 1789-1807.
    • (2005) Mon. Wea. Rev , vol.133 , pp. 1789-1807
    • Tong, M.1    Xue, M.2
  • 28
    • 0032742740 scopus 로고    scopus 로고
    • van Leeuwen, P. J., 1999: Comments on Data assimilation using an ensemble Kalman filter technique. Mon. Wea. Rev., 127, 1374-1377.
    • van Leeuwen, P. J., 1999: Comments on "Data assimilation using an ensemble Kalman filter technique." Mon. Wea. Rev., 127, 1374-1377.
  • 29
    • 0036646009 scopus 로고    scopus 로고
    • Ensemble data assimilation without perturbed observations
    • Whitaker, J. S., and T. M. Hamill, 2002: Ensemble data assimilation without perturbed observations. Mon. Wea. Rev., 130, 1913-1924.
    • (2002) Mon. Wea. Rev , vol.130 , pp. 1913-1924
    • Whitaker, J.S.1    Hamill, T.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.