-
1
-
-
34347348917
-
Estimation of spectral exponent parameter of 1/f process in additive white background noise
-
S. Baykut, T. Akgül, and S. Ergintav. Estimation of spectral exponent parameter of 1/f process in additive white background noise. EURASIP Journal on Advances in Signal Processing, 2007(15):1-7, 2007.
-
(2007)
EURASIP Journal on Advances in Signal Processing
, vol.2007
, Issue.15
, pp. 1-7
-
-
Baykut, S.1
Akgül, T.2
Ergintav, S.3
-
3
-
-
38549090205
-
On fractional gaussian random fields simulations
-
A. Brouste, J. Istas, and S. Lambert-Lacroix. On Fractional Gaussian Random Fields Simulations. Journal of Statistical Software, 23(1): 1-23, 2007.
-
(2007)
Journal of Statistical Software
, vol.23
, Issue.1
, pp. 1-23
-
-
Brouste, A.1
Istas, J.2
Lambert-Lacroix, S.3
-
4
-
-
14844341178
-
Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields
-
G. Chan and A.T.A. Wood. Estimation of fractal dimension for a class of non-Gaussian stationary processes and fields. Annals of Statistics, 32(3):1222-1260, 2004.
-
(2004)
Annals of Statistics
, vol.32
, Issue.3
, pp. 1222-1260
-
-
Chan, G.1
Wood, A.T.A.2
-
5
-
-
0012307377
-
Simulation and identification of the fractional Brownian motion: A bibliographical and comparative study
-
November
-
J.-F. Coeurjolly. Simulation and identification of the fractional Brownian motion: a bibliographical and comparative study. J. Stat. Softw., 5(7):1-53, November 2000a.
-
(2000)
J. Stat. Softw.
, vol.5
, Issue.7
, pp. 1-53
-
-
Coeurjolly, J.-F.1
-
6
-
-
14844364925
-
Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths
-
January
-
J.-F. Coeurjolly. Estimating the parameters of a fractional Brownian motion by discrete variations of its sample paths. Stat. Infer. Stoch. Process., 4(2): 199-227, January 2001.
-
(2001)
Stat. Infer. Stoch. Process
, vol.4
, Issue.2
, pp. 199-227
-
-
Coeurjolly, J.-F.1
-
7
-
-
33947392024
-
Identification of multifractional Brownian motion
-
J.-F. Coeurjolly. Identification of multifractional Brownian motion. Bernoulli, 11(6):987-1008, 2005.
-
(2005)
Bernoulli
, vol.11
, Issue.6
, pp. 987-1008
-
-
Coeurjolly, J.-F.1
-
8
-
-
51049085803
-
Hurst exponent estimation of locally self-similar gaussian processes using sample quantiles
-
J.-F. Coeurjolly. Hurst exponent estimation of locally self-similar gaussian processes using sample quantiles. Annals of Statistics, 36(3):1404-1434, 2008.
-
(2008)
Annals of Statistics
, vol.36
, Issue.3
, pp. 1404-1434
-
-
Coeurjolly, J.-F.1
-
11
-
-
84990575058
-
Orthonormal bases of compactly supported wavelets. Communications on Pure and
-
I. Daubechies. Orthonormal bases of compactly supported wavelets. Communications on Pure and, Applied Mathematics, 41 (7):909-996, 2006.
-
(2006)
Applied Mathematics
, vol.41
, Issue.7
, pp. 909-996
-
-
Daubechies, I.1
-
14
-
-
67650745188
-
Estimators of longmemory: Fourier versus wavelets
-
G. Fäy, E. Moulines, F. Roueff, and M.S. Taqqu. Estimators of longmemory: Fourier versus wavelets. Journal of Econometrics, 151(2):159-177, 2009.
-
(2009)
Journal of Econometrics
, vol.151
, Issue.2
, pp. 159-177
-
-
Fäy, G.1
Moulines, E.2
Roueff, F.3
Taqqu, M.S.4
-
15
-
-
33847385134
-
Quadratic variations of spherical fractional Brownian motions
-
J. Istas. Quadratic variations of spherical fractional Brownian motions. Stochastic Processes and their Applications, 117 (4):476-486, 2007.
-
(2007)
Stochastic Processes and Their Applications
, vol.117
, Issue.4
, pp. 476-486
-
-
Istas, J.1
-
16
-
-
0031521238
-
Quadratic variations and estimation of the hölder index of a gaussian process
-
J. Istas and G. Lang. Quadratic variations and estimation of the hölder index of a gaussian process. Ann. Inst. H. Poincaré Probab. Statist., 33: 407-436, 1997.
-
(1997)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.33
, pp. 407-436
-
-
Istas, J.1
Lang, G.2
-
17
-
-
14244255625
-
Estimating the fractal dimension of a locally self-similar gaussian process using increments
-
J.T. Kent and A.T.A. Wood. Estimating the fractal dimension of a locally self-similar gaussian process using increments. J. Roy. Statist. Soc. Ser. B, 59:679-700, 1997.
-
(1997)
J. Roy. Statist. Soc. Ser. B.
, vol.59
, pp. 679-700
-
-
Kent, J.T.1
Wood, A.T.A.2
-
18
-
-
0000501589
-
Fractional brownian motions, fractional noises and applications
-
B. Mandelbrot and J. Van Ness. Fractional brownian motions, fractional noises and applications. SIAM Rev., 10:422-437, 1968.
-
(1968)
SIAM Rev
, vol.10
, pp. 422-437
-
-
Mandelbrot, B.1
van Ness, J.2
-
20
-
-
62249102839
-
Estimation of anisotropic gaussian fields through radon transform
-
F. Richard and H. Biermé. Estimation of anisotropic gaussian fields through radon transform. ESAIM Probab. Stat., 12(1):30-50, 2008.
-
(2008)
ESAIM Probab. Stat
, vol.12
, Issue.1
, pp. 30-50
-
-
Richard, F.1
Biermé, H.2
-
21
-
-
34247624070
-
Robust estimation of the self-similarity parameter in network traffic using wavelet transform
-
Haipeng Shen, Zhengyuan Zhu, and Thomas C. M. Lee. Robust estimation of the self-similarity parameter in network traffic using wavelet transform. Signal Process., 87(9):2111-2124, 2007.
-
(2007)
Signal Process
, vol.87
, Issue.9
, pp. 2111-2124
-
-
Shen, H.1
Zhu, Z.2
Lee, T.C.M.3
|