-
2
-
-
0000891819
-
Limit theorems for nonlinear functional of a stationary Gaussian sequence of vectors
-
ARCONES, M. A. (1994). Limit theorems for nonlinear functional of a stationary Gaussian sequence of vectors. Ann. Probab. 22 2242-2274.
-
(1994)
Ann. Probab.
, vol.22
, pp. 2242-2274
-
-
Arcones, M.A.1
-
3
-
-
21344434706
-
Periodogram-based estimators of fractal properties
-
CHAN, G., HALL, P. and POSKITT, D. S. (1995). Periodogram-based estimators of fractal properties. Ann. Statist. 23 1684-1711.
-
(1995)
Ann. Statist.
, vol.23
, pp. 1684-1711
-
-
Chan, G.1
Hall, P.2
Poskitt, D.S.3
-
4
-
-
0042547026
-
Simulation of stationary Gaussian vector fields
-
CHAN, G. and WOOD, A. T. A. (1999). Simulation of stationary Gaussian vector fields. Statist. Comput. 9 265-268.
-
(1999)
Statist. Comput.
, vol.9
, pp. 265-268
-
-
Chan, G.1
Wood, A.T.A.2
-
5
-
-
0034389477
-
Increment-based estimators of fractal dimension for two-dimensional surface data
-
CHAN, G. and WOOD, A. T. A. (2000). Increment-based estimators of fractal dimension for two-dimensional surface data. Statist. Sinica 10 343-376.
-
(2000)
Statist. Sinica
, vol.10
, pp. 343-376
-
-
Chan, G.1
Wood, A.T.A.2
-
6
-
-
0001884067
-
Characterising surface smoothness via estimation of effective fractal dimension
-
CONSTANTINE, A. G. and HALL, P. (1994). Characterising surface smoothness via estimation of effective fractal dimension. J. Roy. Statist. Soc. Ser. B 56 97-113.
-
(1994)
J. Roy. Statist. Soc. Ser. B
, vol.56
, pp. 97-113
-
-
Constantine, A.G.1
Hall, P.2
-
7
-
-
0033474256
-
Fractal analysis of surface roughness by using spatial data
-
DAVIES, S. and HALL, P. (1999). Fractal analysis of surface roughness by using spatial data (with discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 61 3-37.
-
(1999)
J. R. Stat. Soc. Ser. B Stat. Methodol.
, vol.61
, pp. 3-37
-
-
Davies, S.1
Hall, P.2
-
8
-
-
13844294706
-
Noncentral limit theorems for nonlinear functions of Gaussian fields
-
DOBRUSHIN, R. L. and MAJOR, P. (1979). Noncentral limit theorems for nonlinear functions of Gaussian fields. Z. Wahrsch. Verw. Gebiete 50 27-52.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 27-52
-
-
Dobrushin, R.L.1
Major, P.2
-
10
-
-
84981374637
-
Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings
-
FEUERVERGER, A., HALL, P. and WOOD, A. T. A. (1994). Estimation of fractal index and fractal dimension of a Gaussian process by counting the number of level crossings. J. Time Ser. Anal. 15 587-606.
-
(1994)
J. Time Ser. Anal.
, vol.15
, pp. 587-606
-
-
Feuerverger, A.1
Hall, P.2
Wood, A.T.A.3
-
11
-
-
0000062845
-
On the relationship between fractal dimension and fractal index for stationary stochastic processes
-
HALL, P. and ROY, R. (1994). On the relationship between fractal dimension and fractal index for stationary stochastic processes. Ann. Appl. Probab. 4 241-253.
-
(1994)
Ann. Appl. Probab.
, vol.4
, pp. 241-253
-
-
Hall, P.1
Roy, R.2
-
12
-
-
0000413704
-
On the performance of box counting estimators of fractal dimension
-
HALL, P. and WOOD, A. T. A. (1993). On the performance of box counting estimators of fractal dimension. Biometrika 80 246-252.
-
(1993)
Biometrika
, vol.80
, pp. 246-252
-
-
Hall, P.1
Wood, A.T.A.2
-
13
-
-
0031521238
-
Quadratic variations and estimation of the local Holder index of a Gaussian process
-
ISTAS, J. and LANG, G. (1997). Quadratic variations and estimation of the local Holder index of a Gaussian process. Ann. Inst. H. Poincaré Probab. Statist. 33 407-436.
-
(1997)
Ann. Inst. H. Poincaré Probab. Statist.
, vol.33
, pp. 407-436
-
-
Istas, J.1
Lang, G.2
-
14
-
-
0025414904
-
Statistical accuracy of measurements on Gaussian random fractals
-
JAKEMAN, E. and JORDAN, D. L. (1990). Statistical accuracy of measurements on Gaussian random fractals. J. Phys. D. 23 397-405.
-
(1990)
J. Phys. D.
, vol.23
, pp. 397-405
-
-
Jakeman, E.1
Jordan, D.L.2
-
15
-
-
0347133428
-
Estimating the fractal dimension of a locally self-similar Gaussian process by using increments
-
Centre for Mathematics and Its Applications, Australian National Univ., Canberra
-
KENT, J. T. and WOOD, A. T. A. (1995). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. Statistics Research Report SRR 034-95, Centre for Mathematics and Its Applications, Australian National Univ., Canberra.
-
(1995)
Statistics Research Report
, vol.SRR 034-95
-
-
Kent, J.T.1
Wood, A.T.A.2
-
16
-
-
14244255625
-
Estimating the fractal dimension of a locally self-similar Gaussian process by using increments
-
KENT, J. T. and WOOD, A. T. A. (1997). Estimating the fractal dimension of a locally self-similar Gaussian process by using increments. J. Roy. Statist. Soc. Ser. B 59 679-699.
-
(1997)
J. Roy. Statist. Soc. Ser. B
, vol.59
, pp. 679-699
-
-
Kent, J.T.1
Wood, A.T.A.2
-
19
-
-
0003617670
-
-
Wiley, New York
-
ROGERS, L. C. G. and WILLIAMS, D. (1994). Diffusions, Markov Processes, and Martingales 1 Foundations, 2nd ed. Wiley, New York.
-
(1994)
Diffusions, Markov Processes, and Martingales 1 Foundations, 2nd Ed.
-
-
Rogers, L.C.G.1
Williams, D.2
-
21
-
-
34250296747
-
Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence
-
TAQQU, M. S. (1977). Law of the iterated logarithm for sums of non-linear functions of Gaussian variables that exhibit a long range dependence. Z. Wahrsch. Verw. Gebiete 40 203-238.
-
(1977)
Z. Wahrsch. Verw. Gebiete
, vol.40
, pp. 203-238
-
-
Taqqu, M.S.1
-
22
-
-
0001915941
-
Convergence of integrated processes of arbitrary Hermite rank
-
TAQQU, M. S. (1979). Convergence of integrated processes of arbitrary Hermite rank. Z. Wahrsch. Verw. Gebiete 50 53-83.
-
(1979)
Z. Wahrsch. Verw. Gebiete
, vol.50
, pp. 53-83
-
-
Taqqu, M.S.1
|