-
5
-
-
34547850707
-
Spin-torque ferromagnetic resonance measurements of damping in nanomagnets
-
DOI 10.1063/1.2768000
-
G. D. Fuchs, J. C. Sankey, V. S. Pribiag, L. Qian, P. M. Braganca, A. G. F. Garcia, E. M. Ryan, Z.-P. Li, O. Ozatay, D. C. Ralph, and R. A. Buhrman, Appl. Phys. Lett. 91, 062507 (2007). 10.1063/1.2768000 (Pubitemid 47247143)
-
(2007)
Applied Physics Letters
, vol.91
, Issue.6
, pp. 062507
-
-
Fuchs, G.D.1
Sankey, J.C.2
Pribiag, V.S.3
Qian, L.4
Braganca, P.M.5
Garcia, A.G.F.6
Ryan, E.M.7
Li, Z.-P.8
Ozatay, O.9
Ralph, D.C.10
Buhrman, R.A.11
-
6
-
-
27744462522
-
Angular dependence of spin torque critical currents for CPP-GMR read heads
-
DOI 10.1109/TMAG.2005.855314
-
N. Smith, J. A. Katine, J. R. Childress, and M. J. Carey, IEEE Trans. Magn. 41, 2935 (2005). 10.1109/TMAG.2005.855314 (Pubitemid 41594511)
-
(2005)
IEEE Transactions on Magnetics
, vol.41
, Issue.10
, pp. 2935-2940
-
-
Smith, N.1
Katine, J.A.2
Childress, J.R.3
Carey, M.J.4
-
7
-
-
70249150337
-
-
As discussed in, 10.1103/PhysRevB.80.064412, the spin-pumping effect described in Ref. leads to additional contributions to the damping tensor matrix D↔ in Eq. which are anisotropic, angle dependent, and nonlocal between RL and FL. For simplicity, these are here simply lumped into the Gilbert damping parameter α for either RL or FL. In this context, "intrinsic" damping refers approximately to that in the limit Ie →0, but also in the presence of the complete stack structure of the spin-valve device of interest.
-
As discussed in N. Smith, Phys. Rev. B 80, 064412 (2009) 10.1103/PhysRevB.80.064412
-
(2009)
Phys. Rev. B
, vol.80
, pp. 064412
-
-
Smith, N.1
-
8
-
-
0036606236
-
Currents and torques in metallic magnetic multilayers
-
DOI 10.1016/S0304-8853(02)00291-3, PII S0304885302002913
-
J. C. Slonczewski, J. Magn. Magn. Mater. 247, 324 (2002). 10.1016/S0304-8853(02)00291-3 (Pubitemid 34624087)
-
(2002)
Journal of Magnetism and Magnetic Materials
, vol.247
, Issue.3
, pp. 324-338
-
-
Slonczewski, J.C.1
-
10
-
-
33646755603
-
-
10.1063/1.2177137
-
N. Smith, J. Appl. Phys. 99, 08Q703 (2006). 10.1063/1.2177137
-
(2006)
J. Appl. Phys.
, vol.99
-
-
Smith, N.1
-
11
-
-
29844432780
-
Nonlocal magnetization dynamics in ferromagnetic heterostructures
-
DOI 10.1103/RevModPhys.77.1375
-
Y. Tserkovnyak, A. Brataas, G. E. W. Bauer, and B. I. Halperin, Rev. Mod. Phys. 77, 1375 (2005). 10.1103/RevModPhys.77.1375 (Pubitemid 43038909)
-
(2005)
Reviews of Modern Physics
, vol.77
, Issue.4
, pp. 1375-1421
-
-
Tserkovnyak, Y.1
Brataas, A.2
Bauer, G.E.W.3
Halperin, B.I.4
-
13
-
-
34347336462
-
-
10.1103/PhysRevB.75.214420
-
R. A. Duine, A. S. Nunez, J. Sinova, and A. H. MacDonald, Phys. Rev. B 75, 214420 (2007). 10.1103/PhysRevB.75.214420
-
(2007)
Phys. Rev. B
, vol.75
, pp. 214420
-
-
Duine, R.A.1
Nunez, A.S.2
Sinova, J.3
MacDonald, A.H.4
-
14
-
-
67649452091
-
-
10.1103/PhysRevLett.102.257602
-
G. Woltersdorf, M. Kiessling, G. Meyer, J. U. Thiele, and C. H. Back, Phys. Rev. Lett. 102, 257602 (2009). 10.1103/PhysRevLett.102.257602
-
(2009)
Phys. Rev. Lett.
, vol.102
, pp. 257602
-
-
Woltersdorf, G.1
Kiessling, M.2
Meyer, G.3
Thiele, J.U.4
Back, C.H.5
-
15
-
-
51749109551
-
-
10.1063/1.2978958
-
S. Maat, N. Smith, M. J. Carey, and J. R. Childress, Appl. Phys. Lett. 93, 103506 (2008). 10.1063/1.2978958
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 103506
-
-
Maat, S.1
Smith, N.2
Carey, M.J.3
Childress, J.R.4
-
16
-
-
57849135543
-
-
10.1103/PhysRevLett.101.247205
-
N. Smith, S. Maat, M. J. Carey, and J. R. Childress, Phys. Rev. Lett. 101, 247205 (2008). 10.1103/PhysRevLett.101.247205
-
(2008)
Phys. Rev. Lett.
, vol.101
, pp. 247205
-
-
Smith, N.1
Maat, S.2
Carey, M.J.3
Childress, J.R.4
-
17
-
-
0038299959
-
-
10.1063/1.367725
-
R. D. McMichael, M. D. Stiles, P. J. Chen, and W. F. Egelhoff, Jr., J. Appl. Phys. 83, 7037 (1998). 10.1063/1.367725
-
(1998)
J. Appl. Phys.
, vol.83
, pp. 7037
-
-
McMichael, R.D.1
Stiles, M.D.2
Chen, P.J.3
Egelhoff, Jr.W.F.4
-
18
-
-
0034907111
-
-
10.1103/PhysRevB.63.214418
-
S. M. Rezende, A. Azevedo, M. A. Lucena, and F. M. de Aguiar, Phys. Rev. B 63, 214418 (2001). 10.1103/PhysRevB.63.214418
-
(2001)
Phys. Rev. B
, vol.63
, pp. 214418
-
-
Rezende, S.M.1
Azevedo, A.2
Lucena, M.A.3
De Aguiar, F.M.4
-
19
-
-
33646719445
-
-
10.1063/1.2167634
-
M. C. Weber, H. Nembach, B. Hillebrands, M. J. Carey, and J. Fassbender, J. Appl. Phys. 99, 08J308 (2006). 10.1063/1.2167634
-
(2006)
J. Appl. Phys.
, vol.99
-
-
Weber, M.C.1
Nembach, H.2
Hillebrands, B.3
Carey, M.J.4
Fassbender, J.5
-
20
-
-
0000652473
-
-
10.1103/PhysRevB.60.7395
-
R. Arias and D. L. Mills, Phys. Rev. B 60, 7395 (1999). 10.1103/PhysRevB.60.7395
-
(1999)
Phys. Rev. B
, vol.60
, pp. 7395
-
-
Arias, R.1
Mills, D.L.2
-
21
-
-
77955484885
-
-
MINT Center, University of Alabama (Tuscaloosa). These bulk film FMR measurements were made in plane, except for the last entry in Table which was measured in the out-of-plane configuration which should exclude two-magnon contributions (Ref.). The similarity in α values suggests two magnon is unimportant here, which in turn then suggests that RL-FL spin-pumping contributions in the present CPP-GMR nanopillars spin valves [footnote (5)] that would not be present in the RL-only bulk samples are also small. Further comparisons of present measurements with additional bulk film FMR results are expected to be addressed in a future publication.
-
T. Mewes, MINT Center, University of Alabama (Tuscaloosa). These bulk film FMR measurements were made in plane, except for the last entry in Table which was measured in the out-of-plane configuration which should exclude two-magnon contributions (Ref.). The similarity in α values suggests two magnon is unimportant here, which in turn then suggests that RL-FL spin-pumping contributions in the present CPP-GMR nanopillars spin valves [footnote (5)] that would not be present in the RL-only bulk samples are also small. Further comparisons of present measurements with additional bulk film FMR results are expected to be addressed in a future publication.
-
-
-
Mewes, T.1
-
22
-
-
77955482105
-
-
A nonzero damping matrix D↔ can technically cause a coupling of nondegenerate eigenmodes if e- m≠n ̇ D↔ ̇ e- n ≠ 0, though this does not change the argument citing this footnote. This small effect can be seen in Fig. as the slight change in the 6 GHz FL FMR peak height and linewidth when αRL is grossly varied from 0.01 to 0.1.
-
A nonzero damping matrix D↔ can technically cause a coupling of nondegenerate eigenmodes if e- m≠n ̇ D↔ ̇ e- n ≠ 0, though this does not change the argument citing this footnote. This small effect can be seen in Fig. as the slight change in the 6 GHz FL FMR peak height and linewidth when αRL is grossly varied from 0.01 to 0.1.
-
-
-
-
23
-
-
77955476462
-
-
(private communication).
-
Thomas Schrefl (private communication).
-
-
-
Schrefl, T.1
-
26
-
-
60849133028
-
-
Appendix A of, 10.1016/j.jmmm.2008.05.009
-
Appendix A of N. Smith, J. Magn. Magn. Mater. 321, 531 (2009). 10.1016/j.jmmm.2008.05.009
-
(2009)
J. Magn. Magn. Mater.
, vol.321
, pp. 531
-
-
Smith, N.1
|