-
1
-
-
84984082223
-
A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates
-
J. F. Andrews. A mathematical model for the continuous culture of microorganisms utilizing inhibitory substrates. Biotechnol. Bioeng., 10 (1968), 707-723.
-
(1968)
Biotechnol. Bioeng.
, vol.10
, pp. 707-723
-
-
Andrews, J.F.1
-
2
-
-
0017362809
-
The effect of a time-delay in a predator-prey model
-
R. Arditi, J.-M. Abillon, J. V. Da Silva. The effect of a time-delay in a predator-prey model. Math. Biosci., 33 (1977), 107-120.
-
(1977)
Math. Biosci.
, vol.33
, pp. 107-120
-
-
Arditi, R.1
Abillon, J.-M.2
Da Silva, J.V.3
-
4
-
-
0001813929
-
On theoretical models for competitive and predatory biological systems
-
M. S. Bartlett. On theoretical models for competitive and predatory biological systems. Biometrika, 44 (1957), 27-42.
-
(1957)
Biometrika
, vol.44
, pp. 27-42
-
-
Bartlett, M.S.1
-
5
-
-
0020380018
-
Harvesting from a prey-predator complex
-
J. R. Beddington, J. G. Cooke. Harvesting from a prey-predator complex. Ecol. Modelling, 14 (1982), 155-177.
-
(1982)
Ecol. Modelling
, vol.14
, pp. 155-177
-
-
Beddington, J.R.1
Cooke, J.G.2
-
7
-
-
0030589781
-
Convergence results in a well-known delayed predator-prey system
-
DOI 10.1006/jmaa.1996.0471
-
E. Beretta, Y. Kuang. Convergence results in a well-known delayed predator-prey system. J. Math. Anal. Appl., 204 (1996), 840-853. (Pubitemid 126167819)
-
(1996)
Journal of Mathematical Analysis and Applications
, vol.204
, Issue.3
, pp. 840-853
-
-
Beretta, E.1
Kuang, Y.2
-
8
-
-
0032058512
-
Global analyses in some delayed ratio-dependent predator-prey systems
-
PII S0362546X97004914
-
E. Beretta, Y. Kuang. Global analysis in some delayed ratio-dependent predator-prey systems. Nonlinear Anal., 32 (1998), 381-408. (Pubitemid 128397593)
-
(1998)
Nonlinear Analysis, Theory, Methods and Applications
, vol.32
, Issue.3
, pp. 381-408
-
-
Beretta, E.1
Kuang, Y.2
-
9
-
-
0036373967
-
Geometric stability switch crteria in delay differential equations with delay dependent parameters
-
E. Beretta, Y. Kuang. Geometric stability switch crteria in delay differential equations with delay dependent parameters. SIAM J. Math. Anal., 33(2002), 1144-1165.
-
(2002)
SIAM J. Math. Anal.
, vol.33
, pp. 1144-1165
-
-
Beretta, E.1
Kuang, Y.2
-
10
-
-
21844482244
-
Stability criteria for second-order dynamical systems involving several time delays
-
F. G. Boes. Stability criteria for second-order dynamical systems involving several time delays. SIAM J. Math. Anal., 26 (1995), 1306-1330.
-
(1995)
SIAM J. Math. Anal.
, vol.26
, pp. 1306-1330
-
-
Boes, F.G.1
-
11
-
-
0017394929
-
Stability of some population models with delay
-
DOI 10.1016/0025-5564(77)90148-1
-
F. Brauer. Stability of some population models with delay. Math. Biosci., 33 (1977), 345-358. (Pubitemid 8102172)
-
(1977)
Mathematical Biosciences
, vol.33
, Issue.3-4
, pp. 345-358
-
-
Brauer, F.1
-
12
-
-
0018305697
-
Characteristic return times for harvested population models with time lag
-
DOI 10.1016/0025-5564(79)90064-6
-
F. Brauer. Characteristic return times for harvested population models with time lag. Math. Biosci., 45 (1979), 295-311. (Pubitemid 9248090)
-
(1979)
Mathematical Biosciences
, vol.45
, Issue.3-4
, pp. 295-311
-
-
Brauer, F.1
-
13
-
-
38249035469
-
Absolute stability in delay equations
-
F. Brauer. Absolute stability in delay equations. J. Differential Equations, 69 (1987), 185-191.
-
(1987)
J. Differential Equations
, vol.69
, pp. 185-191
-
-
Brauer, F.1
-
14
-
-
0018318922
-
Stability regions and transition phenomena for harvested predator-prey systems
-
F. Brauer, A. C. Soudack. Stability regions and transition phenomena for harvested predatorprey systems. J. Math. Biol., 7 (1979), 319-337. (Pubitemid 9255726)
-
(1979)
Journal of Mathematical Biology
, vol.7
, Issue.4
, pp. 319-337
-
-
Brauer, F.1
Soudack, A.C.2
-
15
-
-
0018572296
-
Stability regions in predator-prey systems with constant-rate prey harvesting
-
DOI 10.1007/BF00280586
-
F. Brauer, A. C. Soudack. Stability regions in predator-prey systems with constant-rate prey harvesting. J. Math. Biol., 8 (1979), 55-71. (Pubitemid 9249936)
-
(1979)
Journal of Mathematical Biology
, vol.8
, Issue.1
, pp. 55-71
-
-
Brauer, F.1
Soudack, A.C.2
-
16
-
-
0019862153
-
Coexistence properties of some predator-prey systems under constant rate harvesting and stocking
-
DOI 10.1007/BF00275206
-
F. Brauer, A. C. Soudack. Coexistence properties of some predator-prey systems under constant rate harvesting and stocking. J. Math. Biol., 12 (1981), 101-114. (Pubitemid 11091190)
-
(1981)
Journal of Mathematical Biology
, vol.12
, Issue.1
, pp. 101-114
-
-
Brauer, F.1
Soudack, A.C.2
-
17
-
-
34347187625
-
Sur le problème biologique héréditaiare de deux especès dévorante et dévorée
-
M. Brelot. Sur le problème biologique héréditaiare de deux especès dévorante et dévorée. Ann. Mat. Pura Appl., 9 (1931), 58-74.
-
(1931)
Ann. Mat. Pura Appl.
, vol.9
, pp. 58-74
-
-
Brelot, M.1
-
18
-
-
0017173061
-
The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater
-
A. W. Bush, A. E. Cook. The effect of time delay and growth rate inhibition in the bacterial treatment of wastewater. J. Theoret. Biol., 63 (1976), 385-395.
-
(1976)
J. Theoret. Biol.
, vol.63
, pp. 385-395
-
-
Bush, A.W.1
Cook, A.E.2
-
19
-
-
0000287120
-
Global attractivity in time-delayed predator-prey systems
-
Y. Cao, H. I. Freedman. Global attractivity in time-delayed predator-prey systems. J. Austral. Math. Soc. Ser. B, 38 (1996), 149-162.
-
(1996)
J. Austral. Math. Soc. Ser. B
, vol.38
, pp. 149-162
-
-
Cao, Y.1
Freedman, H.I.2
-
20
-
-
0001453657
-
Time lag in population growth response of isochrysis galbana to a variable nitrate environment
-
J. Caperon. Time lag in population growth response of isochrysis galbana to a variable nitrate environment. Ecology, 50 (1969), 188-192.
-
(1969)
Ecology
, vol.50
, pp. 188-192
-
-
Caperon, J.1
-
21
-
-
0005689817
-
Unconditional stability of systems with time-lags
-
Y.-S. Chin. Unconditional stability of systems with time-lags. Acta Math. Sinica, 1 (1960), 125-142.
-
(1960)
Acta Math. Sinica
, vol.1
, pp. 125-142
-
-
Chin, Y.-S.1
-
22
-
-
0000209631
-
Discrete delay, distributed delay and stability switches
-
K. L. Cooke, Z. Grossman. Discrete delay, distributed delay and stability switches. J. Math. Anal. Appl., 86 (1982), 592-627.
-
(1982)
J. Math. Anal. Appl.
, vol.86
, pp. 592-627
-
-
Cooke, K.L.1
Grossman, Z.2
-
25
-
-
0002419555
-
Stability and maturation periods in age structured populations
-
S. Busenberg and K. L. Cooke (Eds.) Academic Press, New York
-
J. M. Cushing. Stability and maturation periods in age structured populations. In "Differential Equations and Applications in Ecology, Epidemics, and Population Problems", S. Busenberg and K. L. Cooke (Eds.), Academic Press, New York, 1981, pp. 163-182.
-
(1981)
Differential Equations and Applications in Ecology, Epidemics, and Population Problems
, pp. 163-182
-
-
Cushing, J.M.1
-
26
-
-
0019993839
-
A predator prey model with age structure
-
DOI 10.1007/BF01832847
-
J. M. Cushing, M. Saleem. A predator prey model with age structure. J. Math. Biol., 14 (1982), 231-250. Erratum: 16 (1983), 305. (Pubitemid 12043653)
-
(1982)
Journal of Mathematical Biology
, vol.14
, Issue.2
, pp. 231-250
-
-
Cushing, J.M.1
Saleem, M.2
-
27
-
-
0032002567
-
Coexistence region and global dynamics of a harvested predator-prey system
-
PII S0036139994275799
-
G. Dai, M. Tang. Coexistence region and global dynamics of a harvested predator-prey system. SIAM J. Appl. Math., 58 (1998), 193-210. (Pubitemid 128587708)
-
(1998)
SIAM Journal on Applied Mathematics
, vol.58
, Issue.1
, pp. 193-210
-
-
Dai, G.1
Tang, M.2
-
28
-
-
0019473512
-
Nonconstant periodic solutions in predator-prey systems with continuous time delay
-
DOI 10.1016/0025-5564(81)90044-4
-
L. S. Dai. Nonconstant periodic solutions in predator-prey systems with continuous time delay. Math. Biosci., 53 (1981), 149-157. (Pubitemid 11129085)
-
(1981)
Mathematical Biosciences
, vol.53
, Issue.1-2
, pp. 149-157
-
-
Dai, L.S.1
-
29
-
-
0000226236
-
A procedure for determination of the exponential stability of certain differential difference equations
-
R. Datko. A procedure for determination of the exponential stability of certain differential difference equations. Quart. Appl. Math., 36 (1978), 279-292.
-
(1978)
Quart. Appl. Math.
, vol.36
, pp. 279-292
-
-
Datko, R.1
-
32
-
-
0035866130
-
Stability and Bifurcation for a Delayed Predator-Prey Model and the Effect of Diffusion
-
DOI 10.1006/jmaa.2000.7182, PII S0022247X00971828
-
T. Faria. Stability and bifurcation for a delayed predator-prey model and the effect of diffusion. J. Math. Anal. Appl., 254 (2001), 433-463. (Pubitemid 33380901)
-
(2001)
Journal of Mathematical Analysis and Applications
, vol.254
, Issue.2
, pp. 433-463
-
-
Faria, T.1
-
33
-
-
0000840165
-
Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity
-
T. Faria, L. T. Magalhães. Normal forms for retarded functional differential equations and applications to Bogdanov-Takens singularity. J. Differential Equations, 122 (1995), 201-224.
-
(1995)
J. Differential Equations
, vol.122
, pp. 201-224
-
-
Faria, T.1
Magalhães, L.T.2
-
34
-
-
0000840164
-
Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcations
-
T. Faria, L. T. Magalhães. Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcations. J. Differential Equations, 122 (1995), 181-200.
-
(1995)
J. Differential Equations
, vol.122
, pp. 181-200
-
-
Faria, T.1
Magalhães, L.T.2
-
35
-
-
0005729247
-
Multiparameter bifurcation diagrams in predator-prey models with time lag
-
A. Farkas, M. Farkas, G. Szabó. Multiparameter bifurcation diagrams in predator-prey models with time lag. J. Math. Biol., 26 (1988), 93-103.
-
(1988)
J. Math. Biol.
, vol.26
, pp. 93-103
-
-
Farkas, A.1
Farkas, M.2
Szabó, G.3
-
37
-
-
0002455609
-
Nonoccurence of stability switching in systems with discrete delays
-
H. I. Freedman, K. Gopalsamy. Nonoccurence of stability switching in systems with discrete delays. Canad. Math. Bull., 31 (1988), 52-58.
-
(1988)
Canad. Math. Bull.
, vol.31
, pp. 52-58
-
-
Freedman, H.I.1
Gopalsamy, K.2
-
38
-
-
0001352326
-
The tradeoff between mutual interference and time lags in predator-prey systems
-
H. I. Freedman, V. S. H. Rao. The tradeoff between mutual interference and time lags in predator-prey systems. Bull. Math. Biol., 45 (1983), 991-1004.
-
(1983)
Bull. Math. Biol.
, vol.45
, pp. 991-1004
-
-
Freedman, H.I.1
Rao, V.S.H.2
-
39
-
-
0022768009
-
Stability criteria for a system involving two time delays
-
H. I. Freedman, V. S. H. Rao. Stability criteria for a system involving two time delays. SIAM J. Appl. Anal., 46 (1986), 552-560. (Pubitemid 16607820)
-
(1986)
SIAM Journal on Applied Mathematics
, vol.46
, Issue.4
, pp. 552-560
-
-
Freedman, H.I.1
Rao, V.S.H.2
-
40
-
-
0022849138
-
Predator-prey systems with group defence: The paradox of enrichment revisited
-
H. I. Freedman, G. S. K.Wolkowicz. Predator-prey systems with group defence: The paradox of enrichment revisited. Bull. Math. Biol., 48 (1986), 493-508.
-
(1986)
Bull. Math. Biol.
, vol.48
, pp. 493-508
-
-
Freedman, H.I.1
Wolkowicz, G.S.K.2
-
41
-
-
35949030757
-
On the Volterra and other nonlinear models of interacting populations
-
N. S. Goel, S. C. Maitra, E. W. Montroll. On the Volterra and other nonlinear models of interacting populations. Rev. Modern Phys., 43 (1971), 231-276.
-
(1971)
Rev. Modern Phys.
, vol.43
, pp. 231-276
-
-
Goel, N.S.1
Maitra, S.C.2
Montroll, E.W.3
-
42
-
-
0000429668
-
Harmless delay in model systems
-
K. Gopalsamy. Harmless delay in model systems. Bull. Math. Biol., 45 (1983), 295-309.
-
(1983)
Bull. Math. Biol.
, vol.45
, pp. 295-309
-
-
Gopalsamy, K.1
-
43
-
-
0005686511
-
Delayed responses and stability in two-species systems
-
K. Gopalsamy. Delayed responses and stability in two-species systems. J. Austral. Math. Soc. Ser. B, 25 (1984), 473-500.
-
(1984)
J. Austral. Math. Soc. Ser. B
, vol.25
, pp. 473-500
-
-
Gopalsamy, K.1
-
45
-
-
15844390604
-
A stage structured predator-prey model and its dependence on maturation delay and death rate
-
DOI 10.1007/s00285-004-0278-2
-
S. Gourley, Y. Kuang. A stage structured predator-prey model and its dependence on maturation delay and death rate. J. Math. Biol., 49 (2004), 188-200. (Pubitemid 40876393)
-
(2004)
Journal of Mathematical Biology
, vol.49
, Issue.2
, pp. 188-200
-
-
Gourley, S.A.1
Kuang, Y.2
-
49
-
-
0000083221
-
Age-dependent predation is not a simple process: I. continuous time models
-
A. Hastings. Age-dependent predation is not a simple process: I. continuous time models. Theoret. Pop. Biol., 23 (1983), 347-362.
-
(1983)
Theoret. Pop. Biol.
, vol.23
, pp. 347-362
-
-
Hastings, A.1
-
50
-
-
0021742869
-
Delays in recruitment at different trophic levels: Effects on stability
-
A. Hastings. Delays in recruitment at different trophic levels: effects on stability. J. Math. Biol., 21 (1984), 35-44. (Pubitemid 15180123)
-
(1984)
Journal of Mathematical Biology
, vol.21
, Issue.1
, pp. 35-44
-
-
Hastings, A.1
-
51
-
-
0030098369
-
Stability and delays in a predator-prey system
-
DOI 10.1006/jmaa.1996.0087
-
X.-Z. He. Stability and delays in a predator-prey system. J. Math. Anal. Appl., 198 (1996), 355-370. (Pubitemid 126161466)
-
(1996)
Journal of Mathematical Analysis and Applications
, vol.198
, Issue.2
, pp. 355-370
-
-
He, X.-Z.1
-
52
-
-
0032138492
-
The Lyapunov functionals for delay Lotka-Volterra-type models
-
PII S0036139995295116
-
X.-Z. He. The Lyapunov functionals for delay Lotka-Volterra-type models. SIAM J. Appl. Math., 58 (1998), 1222-1236. (Pubitemid 128689431)
-
(1998)
SIAM Journal on Applied Mathematics
, vol.58
, Issue.4
, pp. 1222-1236
-
-
He, X.-Z.1
-
53
-
-
0027069136
-
Stability of a predator-prey model with harvesting
-
W. L. Hogarth, J. Norbury, I. Cunning, K. Sommers. Stability of a predator-prey model with harvesting. Ecol. Modelling, 62 (1992), 83-106. (Pubitemid 23401145)
-
(1992)
Ecological Modelling
, vol.62
, Issue.1-3
, pp. 83-106
-
-
Hogarth, W.L.1
Norbury, J.2
Cunning, I.3
Sommers, K.4
-
54
-
-
4544266198
-
Algebraic criteria on the stability of the zero solutions of the second order delay differential equations
-
W. Huang. Algebraic criteria on the stability of the zero solutions of the second order delay differential equations. J. Anhui University, (1985), 1-7.
-
(1985)
J. Anhui University
, pp. 1-7
-
-
Huang, W.1
-
55
-
-
0028160322
-
What can be learned from the collapse of a renewable resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador
-
J. A. Hutchings, R. A. Myers. What can be learned from the collapse of a renewable resource? Atlantic code, Gadus morhua, of Newfoundland and Labrador. Can. J. Fish. Aquat. Sci., 51 (1994), 2126-2146.
-
(1994)
Can. J. Fish. Aquat. Sci.
, vol.51
, pp. 2126-2146
-
-
Hutchings, J.A.1
Myers, R.A.2
-
57
-
-
0003236870
-
Elements of applied bifurcation theory
-
Springer-Verlag, New York
-
Y. A. Kuznetsov. Elements of applied bifurcation theory. Applied Mathematical Sciences 112, Springer-Verlag, New York, 1995.
-
(1995)
Applied Mathematical Sciences
, vol.112
-
-
Kuznetsov, Y.A.1
-
58
-
-
0037032855
-
Recent progress on stage-structured population dynamics
-
PII S0895717702002790
-
S. Liu, L. Chen, R. Agarwal. Recent progress on stage-structured population dynamics. Math. Computer Model.,36 (2002), 1319-1360. (Pubitemid 35474120)
-
(2002)
Mathematical and Computer Modelling
, vol.36
, Issue.11-13
, pp. 1319-1360
-
-
Liu, S.1
Chen, L.2
Agarwal, R.3
-
59
-
-
3442890192
-
Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response
-
DOI 10.1016/j.jmaa.2004.04.051, PII S0022247X04003191
-
Z. Liu, R. Yuan. Stability and bifurcation in a delayed predator-prey system with Beddinton- DeAngelis functional response. J. Math. Anal. Appl., 296 (2004), 521-537. (Pubitemid 39007480)
-
(2004)
Journal of Mathematical Analysis and Applications
, vol.296
, Issue.2
, pp. 521-537
-
-
Liu, Z.1
Yuan, R.2
-
60
-
-
0031108505
-
Global stability for two-species Lotka-Volterra systems with delay
-
Z. Lu,W.Wang. Global stability for two-species Lotka-Volterra systems with delay. J. Math. Anal. Appl., 208 (1997), 277-280.
-
(1997)
J. Math. Anal. Appl.
, vol.208
, pp. 277-280
-
-
Lu, Z.1
Wang, W.2
-
61
-
-
0000236923
-
Stability of predation models with time delay
-
Z. Ma. Stability of predation models with time delay. Applicable Anal., 22 (1986), 169-192.
-
(1986)
Applicable Anal.
, vol.22
, pp. 169-192
-
-
Ma, Z.1
-
62
-
-
0020155008
-
A test for stability of linear differential delay equations
-
J. M. Mahaffy. A test for stability of linear differential delay equations. Quart. Appl. Math., 40 (1982), 193-202.
-
(1982)
Quart. Appl. Math.
, vol.40
, pp. 193-202
-
-
Mahaffy, J.M.1
-
63
-
-
0035460603
-
Predator-prey models with delay and prey harvesting
-
A. Martin, S. Ruan. Predator-prey models with delay and prey harvesting. J. Mathematical Biology, 43 (2001), 247-267. (Pubitemid 33773344)
-
(2001)
Journal of Mathematical Biology
, vol.43
, Issue.3
, pp. 247-267
-
-
Martin, A.1
Ruan, S.2
-
64
-
-
0001249569
-
Time delay versus stability in population models with two and three trophic levels
-
R. M. May. Time delay versus stability in population models with two and three trophic levels. Ecology, 4 (1973), 315-325.
-
(1973)
Ecology
, vol.4
, pp. 315-325
-
-
May, R.M.1
-
66
-
-
0030616815
-
Why do fish stocks collapse? the example of cod in Atlantic Canada
-
R. A. Myers, J. A. Hutchings, N. J. Barrowman. Why do fish stocks collapse? The example of cod in Atlantic Canada. Ecol. Appl., 7 (1997), 91-106.
-
(1997)
Ecol. Appl.
, vol.7
, pp. 91-106
-
-
Myers, R.A.1
Hutchings, J.A.2
Barrowman, N.J.3
-
67
-
-
0038688384
-
Rapid worldwide depletion of predatory fish communities
-
DOI 10.1038/nature01610
-
R. A. Myers, B. Worm. Rapid worldwide depletion of large predatory fish communities. Nature, 423 (2003), 280-283. (Pubitemid 40852696)
-
(2003)
Nature
, vol.423
, Issue.6937
, pp. 280-283
-
-
Myers, R.A.1
Worm, B.2
-
68
-
-
0000360599
-
An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking
-
M. R. Myerscough, B. F. Gray, W. L. Hogarth, J. Norbury. An analysis of an ordinary differential equation model for a two-species predator-prey system with harvesting and stocking. J. Math. Biol., 30 (1992), 389-411.
-
(1992)
J. Math. Biol.
, vol.30
, pp. 389-411
-
-
Myerscough, M.R.1
Gray, B.F.2
Hogarth, W.L.3
Norbury, J.4
-
69
-
-
33846872987
-
Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system
-
S. Nakaoka, Y. Saito, Y. Takeuchi. Stability, delay, and chaotic behavior in a Lotka-Volterra predator-prey system. Math. Biosci. Engineer., 3 (2006), 173-187. (Pubitemid 46227039)
-
(2006)
Mathematical Biosciences and Engineering
, vol.3
, Issue.1
, pp. 173-187
-
-
Nakaoka, S.1
Saito, Y.2
Takeuchi, Y.3
-
70
-
-
0022042327
-
The effect of long time delays in predator-prey systems
-
L. Nunney. The effect of long time delays in predator-prey systems. Theoret. Pop. Biol., 27 (1985), 202-221.
-
(1985)
Theoret. Pop. Biol.
, vol.27
, pp. 202-221
-
-
Nunney, L.1
-
71
-
-
0005749085
-
Absolute stability in predator-prey models
-
L. Nunney. Absolute stability in predator-prey models. Theoret. Pop. Biol., 28 (1985), 209-232.
-
(1985)
Theoret. Pop. Biol.
, vol.28
, pp. 209-232
-
-
Nunney, L.1
-
72
-
-
34248370155
-
Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure
-
DOI 10.1007/s11071-006-9133-x
-
Y. Qu, J. Wei. Bifurcation analysis in a time-delay model for prey-predator growth with stage-structure. Nonlinear Dynamics, 49 (2007), 285-294. (Pubitemid 46739715)
-
(2007)
Nonlinear Dynamics
, vol.49
, Issue.1-2
, pp. 285-294
-
-
Qu, Y.1
Wei, J.2
-
73
-
-
0015449004
-
A difference-differential model in population dynamics
-
G. G. Ross. A difference-differential model in population dynamics. J. Theoret. Biol., 37 (1972), 477-492.
-
(1972)
J. Theoret. Biol.
, vol.37
, pp. 477-492
-
-
Ross, G.G.1
-
74
-
-
0035281981
-
Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays
-
S. Ruan. Absolute stability, conditional stability and bifurcation in Kolmogorov-type predator-prey systems with discrete delays. Quart. Appl. Math., 59 (2001), 159-173. (Pubitemid 32248363)
-
(2001)
Quarterly of Applied Mathematics
, vol.59
, Issue.1
, pp. 159-173
-
-
Ruan, S.1
-
75
-
-
34248517099
-
Delay differential equations in single species dynamics
-
"Delay Differential Equations with Applications," O. Arino, M. Hbid and E. Ait Dads (Eds.), Springer, Berlin
-
S. Ruan. Delay differential equations in single species dynamics. In "Delay Differential Equations with Applications," O. Arino, M. Hbid and E. Ait Dads (Eds.), NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 205, Springer, Berlin, 2006, pp. 477-517.
-
(2006)
NATO Science Series II: Mathematics, Physics and Chemistry
, vol.205
, pp. 477-517
-
-
Ruan, S.1
-
77
-
-
0034839054
-
Global analysis in a predator-prey system with nonmonotonic functional response
-
DOI 10.1137/S0036139999361896, PII S0036139999361896
-
S. Ruan, D. Xiao. Global analysis in a predator-prey system with nonmonotonic functional response. SIAM J, Appl. Math., 61 (2001), 1445-1472. (Pubitemid 32825187)
-
(2001)
SIAM Journal on Applied Mathematics
, vol.61
, Issue.4
, pp. 1445-1472
-
-
Ruan, S.1
Xiao, D.2
-
78
-
-
84942111823
-
Kinetics of phenol oxidation by washed cells
-
W. Sokol, J. A. Howell. Kinetics of phenol oxidation by washed cells. Biotechnol. Bioeng., 23 (1980), 2039-2049.
-
(1980)
Biotechnol. Bioeng.
, vol.23
, pp. 2039-2049
-
-
Sokol, W.1
Howell, J.A.2
-
79
-
-
34548261392
-
Bifurcations for a predator-prey system with two delays
-
Y. Song, Y. Peng, J. Wei. Bifurcations for a predator-prey system with two delays. J. Math. Anal. Appl., 337 (2008), 466-479.
-
(2008)
J. Math. Anal. Appl.
, vol.337
, pp. 466-479
-
-
Song, Y.1
Peng, Y.2
Wei, J.3
-
80
-
-
10144242643
-
Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system
-
DOI 10.1016/j.jmaa.2004.06.056, PII S0022247X04005700
-
Y. Song, J.Wei. Local Hopf bifurcation and global periodic solutions in a delayed predatorprey system. J. Math. Anal. Appl., 301 (2005), 1-21. (Pubitemid 39615204)
-
(2005)
Journal of Mathematical Analysis and Applications
, vol.301
, Issue.1
, pp. 1-21
-
-
Song, Y.1
Wei, J.2
-
81
-
-
0001513451
-
Great delay in a predator-prey model
-
G. Stépán. Great delay in a predator-prey model. Nonlinear Anal., 10 (1986), 913-929.
-
(1986)
Nonlinear Anal.
, vol.10
, pp. 913-929
-
-
Stépán, G.1
-
82
-
-
0002885593
-
Periodic solutions of a planar delay equation
-
P. Táboas. Periodic solutions of a planar delay equation. Proc. Roy. Soc. Edinburgh, 116A (1990), 85-101.
-
(1990)
Proc. Roy. Soc. Edinburgh
, vol.116 A
, pp. 85-101
-
-
Táboas, P.1
-
83
-
-
0002604954
-
Variazionie fluttuazioni del numbero d'individui in specie animali conviventi
-
V. Volterra. Variazionie fluttuazioni del numbero d'individui in specie animali conviventi. Mem. Acad. Lincei., 2 (1926), 31-113.
-
(1926)
Mem. Acad. Lincei.
, vol.2
, pp. 31-113
-
-
Volterra, V.1
-
85
-
-
0031124171
-
A predator-prey system with stage-structure for predators
-
W. Wang, L. Chen. A predator-prey system with stage-structure for predators. Computers Math. Appl., 33 (1997), No. 8, 83-91.
-
(1997)
Computers Math. Appl.
, vol.33
, Issue.8
, pp. 83-91
-
-
Wang, W.1
Chen, L.2
-
86
-
-
0001519022
-
Time lag in prey-predator population models
-
P. J. Wangersky, W. J. Cunningham. Time lag in prey-predator population models. Ecology, 38 (1957), 136-139.
-
(1957)
Ecology
, vol.38
, pp. 136-139
-
-
Wangersky, P.J.1
Cunningham, W.J.2
-
87
-
-
0001555614
-
Bifurcation analysis of a predator-prey system involving group defence
-
G. S. K.Wolkowicz. Bifurcation analysis of a predator-prey system involving group defence. SIAM J. Appl. Math., 48 (1988), 592-606.
-
(1988)
SIAM J. Appl. Math.
, vol.48
, pp. 592-606
-
-
Wolkowicz, G.S.K.1
-
88
-
-
33646864830
-
Symmetric functional differential equations and neural networks with memory
-
DOI 10.1090/S0002-9947-98-02083-2
-
J.Wu. Symmetric functional differential equations and neural networks with memory. Trans. Amer. Math. Soc., 350 (1998), 4799-4838. (Pubitemid 128166065)
-
(1998)
Transactions of the American Mathematical Society
, vol.350
, Issue.12
, pp. 4799-4838
-
-
Wu, J.1
-
89
-
-
79960804111
-
The effects of harvesting and time delay on predator-prey systems with Holling type II functional response
-
revised
-
J. Xia, Z. Liu, R. Yuan, S. Ruan. The effects of harvesting and time delay on predator-prey systems with Holling type II functional response. SIAM J. Appl. Math. (revised).
-
SIAM J. Appl. Math.
-
-
Xia, J.1
Liu, Z.2
Yuan, R.3
Ruan, S.4
-
90
-
-
0037299742
-
Stability and bifurcation in a delayed ratio-dependent predator-prey system
-
DOI 10.1017/S0013091500001140
-
D. Xiao, W. Li. Stability and bifurcation in a delayed ratio-dependent predator-prey system. Proc. Edinburgh Math. Soc., 46A (2003), 205-220. (Pubitemid 36357338)
-
(2003)
Proceedings of the Edinburgh Mathematical Society
, vol.46
, Issue.1
, pp. 205-220
-
-
Xiao, D.1
Wenxia, L.I.2
-
91
-
-
0000052872
-
Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting
-
D. Xiao, S. Ruan. Bogdanov-Takens bifurcations in predator-prey systems with constant rate harvesting. Fields Institute Communications, 21 (1999), 493-506.
-
(1999)
Fields Institute Communications
, vol.21
, pp. 493-506
-
-
Xiao, D.1
Ruan, S.2
-
92
-
-
0035507108
-
Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response
-
DOI 10.1006/jdeq.2000.3982
-
D. Xiao, S. Ruan. Multiple bifurcations in a delayed predator-prey system with nonmonotonic functional response. J. Differential Equations, 176 (2001), 494-510. (Pubitemid 33082434)
-
(2001)
Journal of Differential Equations
, vol.176
, Issue.2
, pp. 494-510
-
-
Xiao, D.1
Ruan, S.2
-
93
-
-
33744545227
-
Hopf bifurcation and global periodic solutions in a delayed predator-prey system
-
DOI 10.1016/j.amc.2005.11.020, PII S0096300305009227
-
X.-P. Yan, W.-T. Li. Hopf bifurcation and global periodic solutions in a delayed predatorprey system. Appl. Math. Computat., 177 (2006), 427-445. (Pubitemid 43815543)
-
(2006)
Applied Mathematics and Computation
, vol.177
, Issue.1
, pp. 427-445
-
-
Yan, X.-P.1
Li, W.-T.2
-
94
-
-
0031126691
-
Global existence of periodic solutions in a class of delayed gause-type predator-prey systems
-
T. Zhao, Y. Kuang, H. L. Smith. Global existence of periodic solutions in a class of delayed Gause-type predator-prey systems. Nonlinear Anal., 28 (1997), 1373-1394. (Pubitemid 127425178)
-
(1997)
Nonlinear Analysis, Theory, Methods and Applications
, vol.28
, Issue.8
, pp. 1373-1394
-
-
Zhao, T.1
Kuang, Y.2
Smith, H.L.3
|