-
1
-
-
48749126647
-
Neural network approaches to capture temporal information
-
May
-
M. van Veelen, J. Nijhuis, and B. Spaanenburg. Neural network approaches to capture temporal information. In Computing Anticipatory Systems - Third International Conference. AIP Conference Proceedings, volume 517 of American Institute of Physics Conference Series, pages 361-371, May 2000.
-
(2000)
Computing Anticipatory Systems - Third International Conference. AIP Conference Proceedings, Volume 517 of American Institute of Physics Conference Series
, pp. 361-371
-
-
van Veelen, M.1
Nijhuis, J.2
Spaanenburg, B.3
-
2
-
-
0001940458
-
Adaptative mixtures of local experts
-
R.A. Jacobs, M.I. Jordan, S.J. Nowlan, and G.E. Hinton. Adaptative mixtures of local experts. Neural Computation, 3:79-87, 1991.
-
(1991)
Neural Computation
, vol.3
, pp. 79-87
-
-
Jacobs, R.A.1
Jordan, M.I.2
Nowlan, S.J.3
Hinton, G.E.4
-
3
-
-
79951577941
-
Local modeling using self-organizing maps and single layer neural networks
-
O. Fontenla-Romero, A. Alonso-Betanzos, E. Castillo, J.C. Principe, and B. Guijarro-Berdiñas. Local modeling using self-organizing maps and single layer neural networks. In Lecture Notes In Computer Science, volume 2415, pages 945-950, 2002.
-
(2002)
Lecture Notes In Computer Science
, vol.2415
, pp. 945-950
-
-
Fontenla-Romero, O.1
Alonso-Betanzos, A.2
Castillo, E.3
Principe, J.C.4
Guijarro-Berdiñas, B.5
-
4
-
-
0010684318
-
Using the SOM and local models in time-series prediction
-
Espoo, Finland
-
J. Vesanto. Using the SOM and local models in time-series prediction. In Proceedings of WSOM'97, Workshop on Self-Organizing Maps, Espoo, Finland, pages 209-214. 1997.
-
(1997)
Proceedings of WSOM'97, Workshop On Self-Organizing Maps
, pp. 209-214
-
-
Vesanto, J.1
-
6
-
-
14844296969
-
Vector-quantization using information theoretic concepts
-
J.C. Principe, T. Lehn-Schioler, A. Hedge, and D. Erdogmus. Vector-quantization using information theoretic concepts. Natural Computing, 4:39-51, 2005.
-
(2005)
Natural Computing
, vol.4
, pp. 39-51
-
-
Principe, J.C.1
Lehn-Schioler, T.2
Hedge, A.3
Erdogmus, D.4
-
7
-
-
77952579738
-
A global optimum approach for one-layer neural networks
-
O. Fontenla-Romero, A. Alonso-Betanzos, E. Castillo, and B. Guijarro-Berdiñas. A global optimum approach for one-layer neural networks. In Lecture Notes In Computer Science, volume 2415, pages 1429-1449, 2002.
-
(2002)
Lecture Notes In Computer Science
, vol.2415
, pp. 1429-1449
-
-
Fontenla-Romero, O.1
Alonso-Betanzos, A.2
Castillo, E.3
Guijarro-Berdiñas, B.4
-
8
-
-
0027205884
-
A scaled conjugate gradient algorithm for fast supervised learning
-
M. Moller. A scaled conjugate gradient algorithm for fast supervised learning. Neural Networks, 6:525-533, 1993.
-
(1993)
Neural Networks
, vol.6
, pp. 525-533
-
-
Moller, M.1
-
10
-
-
35148885542
-
-
Last access: 2-11-2007
-
E.A. Wan. Time series data, 2005. http://www.cse.ogi.edu/ericwan/data.html, Last access: 2-11-2007.
-
(2005)
Time Series Data
-
-
Wan, E.A.1
-
11
-
-
33749860092
-
-
Last access: 2-11-2007
-
P. Vlachos. Statlib-datasets archive, 2005. http://lib.stat.cmu.edu/datasets/, Last access: 2-11-2007.
-
(2005)
Statlib-datasets Archive
-
-
Vlachos, P.1
-
12
-
-
0346250790
-
Practical selection of SVM parameters and noise estimation for SVM regression
-
V. Cherkassky and Y. Ma. Practical selection of SVM parameters and noise estimation for SVM regression. Neural Computation, 17:113-126, 2002.
-
(2002)
Neural Computation
, vol.17
, pp. 113-126
-
-
Cherkassky, V.1
Ma, Y.2
|