메뉴 건너뛰기




Volumn 50, Issue 1, 2010, Pages 23-32

A computer-aided detection system for clustered microcalcifications

Author keywords

Classification with unbalanced classes; Computer aided detection; Mammography; Markov random field

Indexed keywords

COMPUTER AIDED DIAGNOSIS; IMAGE SEGMENTATION; MAMMOGRAPHY; MARKOV PROCESSES; TREES (MATHEMATICS); X RAY SCREENS;

EID: 77955279059     PISSN: 09333657     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.artmed.2010.04.007     Document Type: Article
Times cited : (35)

References (37)
  • 2
    • 0033131710 scopus 로고    scopus 로고
    • Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network
    • Tsujii O., Freedman M.T., Mun S.K. Classification of microcalcifications in digital mammograms using trend-oriented radial basis function neural network. Pattern Recognition 1999, 32:891-903.
    • (1999) Pattern Recognition , vol.32 , pp. 891-903
    • Tsujii, O.1    Freedman, M.T.2    Mun, S.K.3
  • 3
    • 19044383038 scopus 로고    scopus 로고
    • A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications
    • Wei L., Yang Y., Nishikawa R., Jiang Y. A study on several machine-learning methods for classification of malignant and benign clustered microcalcifications. IEEE Transactions on Medical Imaging 2005, 24(3):371-380.
    • (2005) IEEE Transactions on Medical Imaging , vol.24 , Issue.3 , pp. 371-380
    • Wei, L.1    Yang, Y.2    Nishikawa, R.3    Jiang, Y.4
  • 4
    • 0002085179 scopus 로고    scopus 로고
    • Improved correction for signal dependent noise applied to automatic detection of microcalcifications
    • Kluwer Academic, Nijmegen, N. Karssemeijer, M. Thijssen, J. Hendriks, L. van Erning (Eds.)
    • Veldkamp W., Karssemeijer N. Improved correction for signal dependent noise applied to automatic detection of microcalcifications. Digital mammography, vol. 98 1998, 160-176. Kluwer Academic, Nijmegen. N. Karssemeijer, M. Thijssen, J. Hendriks, L. van Erning (Eds.).
    • (1998) Digital mammography, vol. 98 , pp. 160-176
    • Veldkamp, W.1    Karssemeijer, N.2
  • 5
    • 0141885057 scopus 로고    scopus 로고
    • A tree-structured Markov random field model for Bayesian image segmentation
    • D'Elia C., Poggi G., Scarpa G. A tree-structured Markov random field model for Bayesian image segmentation. IEEE Transactions on Image Processing 2003, 12(10):1259-1273.
    • (2003) IEEE Transactions on Image Processing , vol.12 , Issue.10 , pp. 1259-1273
    • D'Elia, C.1    Poggi, G.2    Scarpa, G.3
  • 6
    • 0142120449 scopus 로고    scopus 로고
    • Computer-aided detection and classification of microcalcification in mammograms: a survey
    • Cheng H., Cai X., Chen X., Hu L., Lou X. Computer-aided detection and classification of microcalcification in mammograms: a survey. Pattern Recognition 2003, 36:2967-2991.
    • (2003) Pattern Recognition , vol.36 , pp. 2967-2991
    • Cheng, H.1    Cai, X.2    Chen, X.3    Hu, L.4    Lou, X.5
  • 7
    • 34247169972 scopus 로고    scopus 로고
    • Current status and future directions of computer-aided diagnosis in mammography
    • Nishikawa R. Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics 2007, 31:1357-1376.
    • (2007) Computerized Medical Imaging and Graphics , vol.31 , pp. 1357-1376
    • Nishikawa, R.1
  • 8
    • 0027512684 scopus 로고
    • Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer
    • Wu Y., Giger M., Doi K., Vyborny C., Schmidt R., Metz C. Artificial neural networks in mammography: application to decision making in the diagnosis of breast cancer. Radiology 1993, 187:81-87.
    • (1993) Radiology , vol.187 , pp. 81-87
    • Wu, Y.1    Giger, M.2    Doi, K.3    Vyborny, C.4    Schmidt, R.5    Metz, C.6
  • 10
    • 33845339237 scopus 로고    scopus 로고
    • A genetic algorithm design for microcalcification detection and classification in digital mammograms
    • Jiang J., Yao B., Wason A. A genetic algorithm design for microcalcification detection and classification in digital mammograms. Computerized Medical Imaging and Graphics 2007, 31:49-61.
    • (2007) Computerized Medical Imaging and Graphics , vol.31 , pp. 49-61
    • Jiang, J.1    Yao, B.2    Wason, A.3
  • 11
    • 33646077220 scopus 로고    scopus 로고
    • Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis
    • Peng Y., Yao B., Jiang J. Knowledge-discovery incorporated evolutionary search for microcalcification detection in breast cancer diagnosis. Artificial Intelligence in Medicine 2006, 37:43-53.
    • (2006) Artificial Intelligence in Medicine , vol.37 , pp. 43-53
    • Peng, Y.1    Yao, B.2    Jiang, J.3
  • 12
    • 31544432048 scopus 로고    scopus 로고
    • Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms
    • Nakayama R., Uchiyama Y., Yamamoto K., Watanabe R., Namba K. Computer-aided diagnosis scheme using a filter bank for detection of microcalcification clusters in mammograms. IEEE Transactions on Biomedical Engineering 2006, 53(2):273-283.
    • (2006) IEEE Transactions on Biomedical Engineering , vol.53 , Issue.2 , pp. 273-283
    • Nakayama, R.1    Uchiyama, Y.2    Yamamoto, K.3    Watanabe, R.4    Namba, K.5
  • 13
    • 0030129835 scopus 로고    scopus 로고
    • Wavelet transform for detecting microcalcifications in mammograms
    • Strickland R., Hahn H. Wavelet transform for detecting microcalcifications in mammograms. IEEE Transactions on Medical Imaging 1996, 15(2):218-229.
    • (1996) IEEE Transactions on Medical Imaging , vol.15 , Issue.2 , pp. 218-229
    • Strickland, R.1    Hahn, H.2
  • 14
    • 0033181290 scopus 로고    scopus 로고
    • Scale-space signatures for the detection of clustered microcalcifications in digital mammograms
    • Netsch T., Peitgen H. Scale-space signatures for the detection of clustered microcalcifications in digital mammograms. IEEE Transaction on Medical Imaging 1999, 18(9):774-786.
    • (1999) IEEE Transaction on Medical Imaging , vol.18 , Issue.9 , pp. 774-786
    • Netsch, T.1    Peitgen, H.2
  • 15
    • 0031212586 scopus 로고    scopus 로고
    • Detection of microcalcifications in mammograms using higher order statistics
    • Gurcan M., Yardimci Y., Cetin A., Ansari R.R. Detection of microcalcifications in mammograms using higher order statistics. IEEE Signal Processing Letters 1997, 4(8):213-216.
    • (1997) IEEE Signal Processing Letters , vol.4 , Issue.8 , pp. 213-216
    • Gurcan, M.1    Yardimci, Y.2    Cetin, A.3    Ansari, R.R.4
  • 19
    • 33746883567 scopus 로고    scopus 로고
    • Markovrandom field modeling for three-dimensional reconstruction of the left ventricle in cardiac angiography
    • Medina R., Garreau M., Toro J., Breton H.L., Coatrieux J.L., Jugo D. Markovrandom field modeling for three-dimensional reconstruction of the left ventricle in cardiac angiography. IEEE Transactions on Medical Imaging 2006, 25(8):1087-1100.
    • (2006) IEEE Transactions on Medical Imaging , vol.25 , Issue.8 , pp. 1087-1100
    • Medina, R.1    Garreau, M.2    Toro, J.3    Breton, H.L.4    Coatrieux, J.L.5    Jugo, D.6
  • 21
    • 54049098747 scopus 로고    scopus 로고
    • Markov random field-based clustering applied to the segmentation of masses in digital mammograms
    • Suliga M., Deklerck R., Nyssen E. Markov random field-based clustering applied to the segmentation of masses in digital mammograms. Computerized Medical Imaging and Graphics 2008, 32:502-512.
    • (2008) Computerized Medical Imaging and Graphics , vol.32 , pp. 502-512
    • Suliga, M.1    Deklerck, R.2    Nyssen, E.3
  • 22
    • 0035384865 scopus 로고    scopus 로고
    • An artificial intelligent algorithm for tumor detection inscreening mammogram
    • Zheng L., Chan K. An artificial intelligent algorithm for tumor detection inscreening mammogram. IEEE Transactions on Medical Imaging 2001, 20(7):559-567.
    • (2001) IEEE Transactions on Medical Imaging , vol.20 , Issue.7 , pp. 559-567
    • Zheng, L.1    Chan, K.2
  • 23
    • 33744520648 scopus 로고    scopus 로고
    • Detection of microcalcifications in digital mammograms using wavelet filter and markov random field model
    • Yu S., Li K., Huang Y.K. Detection of microcalcifications in digital mammograms using wavelet filter and markov random field model. Computerized Medical Imaging and Graphics 2006, 30:163-173.
    • (2006) Computerized Medical Imaging and Graphics , vol.30 , pp. 163-173
    • Yu, S.1    Li, K.2    Huang, Y.K.3
  • 25
    • 0242456234 scopus 로고    scopus 로고
    • Microcalcification detection using fuzzy logic and scale space approach
    • Cheng H.D., Wang J., Shi X. Microcalcification detection using fuzzy logic and scale space approach. Pattern Recognition 2004, 37:363-375.
    • (2004) Pattern Recognition , vol.37 , pp. 363-375
    • Cheng, H.D.1    Wang, J.2    Shi, X.3
  • 26
    • 19344363582 scopus 로고    scopus 로고
    • Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines
    • Papadopoulos A., Fotiadis D., Likas A. Characterization of clustered microcalcifications in digitized mammograms using neural networks and support vector machines. Artificial Intelligence in Medicine 2005, 34:141-150.
    • (2005) Artificial Intelligence in Medicine , vol.34 , pp. 141-150
    • Papadopoulos, A.1    Fotiadis, D.2    Likas, A.3
  • 27
    • 0037411353 scopus 로고    scopus 로고
    • Automatic classification of clustered microcalcifications by a multiple expert system
    • De Santo M., Molinara M., Tortorella F., Vento M. Automatic classification of clustered microcalcifications by a multiple expert system. Pattern Recognition 2003, 3:1467-1477.
    • (2003) Pattern Recognition , vol.3 , pp. 1467-1477
    • De Santo, M.1    Molinara, M.2    Tortorella, F.3    Vento, M.4
  • 29
    • 0018306059 scopus 로고
    • A threshold selection method from gray-level histograms
    • Otsu N. A threshold selection method from gray-level histograms. IEEE Transactions on Systems, Man and Cybernetics 1979, 9(1):62-66.
    • (1979) IEEE Transactions on Systems, Man and Cybernetics , vol.9 , Issue.1 , pp. 62-66
    • Otsu, N.1
  • 30
    • 24944572607 scopus 로고    scopus 로고
    • Supervised segmentation of remote sensing images based on a tree-structured mrf model
    • Poggi G., Scarpa G., Zerubia J. Supervised segmentation of remote sensing images based on a tree-structured mrf model. IEEE Transactions on Geoscience and Remote Sensing 2005, 43(8):1901-1911.
    • (2005) IEEE Transactions on Geoscience and Remote Sensing , vol.43 , Issue.8 , pp. 1901-1911
    • Poggi, G.1    Scarpa, G.2    Zerubia, J.3
  • 31
    • 77955267242 scopus 로고    scopus 로고
    • The effect of class distribution on classifier learning: an empirical study, Tech. Re ML-TR-44, Department of Computer Science, Rutgers University
    • Weiss G, Provost F. The effect of class distribution on classifier learning: an empirical study, Tech. Re ML-TR-44, Department of Computer Science, Rutgers University, 2001.
    • (2001)
    • Weiss, G.1    Provost, F.2
  • 32
    • 27144549260 scopus 로고    scopus 로고
    • Editorial: special issue on learning from imbalanced data sets, SIGKDD Exploration Newsletter
    • Chawla N.V., Japkowicz N., Kotcz A. Editorial: special issue on learning from imbalanced data sets, SIGKDD Exploration Newsletter. ACM 2004, 6(1):1-6.
    • (2004) ACM , vol.6 , Issue.1 , pp. 1-6
    • Chawla, N.V.1    Japkowicz, N.2    Kotcz, A.3
  • 35
    • 0019047147 scopus 로고
    • Image analysis via the general theory of moments
    • Teague M. Image analysis via the general theory of moments. Journal of Optical Society of America 1980, 70:920-930.
    • (1980) Journal of Optical Society of America , vol.70 , pp. 920-930
    • Teague, M.1
  • 36
    • 0034164230 scopus 로고    scopus 로고
    • Additive logistic regression: a statistical view of boosting
    • Friedman J., Hastie T., Tibshirani R. Additive logistic regression: a statistical view of boosting. The Annals of Statistics 2000, 38:337-374.
    • (2000) The Annals of Statistics , vol.38 , pp. 337-374
    • Friedman, J.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.