-
1
-
-
0033481261
-
Lattice electromagnetic theory from a topological viewpoint
-
F.L. Teixeira, and W.C. Chew Lattice electromagnetic theory from a topological viewpoint J. Math. Phys. 40 1999 169 187
-
(1999)
J. Math. Phys.
, vol.40
, pp. 169-187
-
-
Teixeira, F.L.1
Chew, W.C.2
-
2
-
-
0024104484
-
Whitney forms: A class of finite elements for three dimensional computations in electromagnetism
-
A. Bossavit Whitney forms: A class of finite elements for three dimensional computations in electromagnetism IEE Proc. 135 1988 493 500
-
(1988)
IEE Proc.
, vol.135
, pp. 493-500
-
-
Bossavit, A.1
-
3
-
-
0031570250
-
An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology
-
C. Mattiussi An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology J. Comput. Phys. 133 1997 289 309
-
(1997)
J. Comput. Phys.
, vol.133
, pp. 289-309
-
-
Mattiussi, C.1
-
4
-
-
0034556469
-
Fortin operator and discrete compactness for edge elements
-
D. Boffi Fortin operator and discrete compactness for edge elements Numer. Math. 87 2000 229 246
-
(2000)
Numer. Math.
, vol.87
, pp. 229-246
-
-
Boffi, D.1
-
6
-
-
0000807589
-
Computational models of electromagnetic resonators: Analysis of edge element approximation
-
D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia Computational models of electromagnetic resonators: Analysis of edge element approximation SIAM J. Numer. Anal. 36 1999 1264 1290
-
(1999)
SIAM J. Numer. Anal.
, vol.36
, pp. 1264-1290
-
-
Boffi, D.1
Fernandes, P.2
Gastaldi, L.3
Perugia, I.4
-
7
-
-
26944484259
-
Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes
-
DOI 10.1137/040613950
-
F. Brezzi, K. Lipnikov, and M. Shashkov Convergence of the mimetic finite difference method for diffusion problems on polyhedral meshes SIAM J. Numer. Anal. 43 2005 1872 1896 (electronic) (Pubitemid 44598663)
-
(2005)
SIAM Journal on Numerical Analysis
, vol.43
, Issue.5
, pp. 1872-1896
-
-
Brezzi, F.1
Lipnikov, K.2
Shashkov, M.3
-
9
-
-
33646719455
-
Principles of mimetic discretizations of differential operators Compatible Spatial Discretizations
-
Springer New York
-
P.B. Bochev, and J.M. Hyman Principles of mimetic discretizations of differential operators Compatible Spatial Discretizations IMA Vol. Math. Appl. vol. 142 2006 Springer New York 89 119
-
(2006)
IMA Vol. Math. Appl.
, vol.142
, pp. 89-119
-
-
Bochev, P.B.1
Hyman, J.M.2
-
10
-
-
0003093017
-
A note on the de Rham complex and a discrete compactness property
-
D. Boffi A note on the de Rham complex and a discrete compactness property Appl. Math. Lett. 14 2001 33 38
-
(2001)
Appl. Math. Lett.
, vol.14
, pp. 33-38
-
-
Boffi, D.1
-
11
-
-
10444251828
-
-
L. Demkowicz, and A. Buffa H 1, H (curl ) and H (div ) -conforming projection-based interpolation in three dimensions. Quasi-optimal p -interpolation estimates Comput. Methods Appl. Mech. Engrg. 194 2005 267 296
-
(2005)
Comput. Methods Appl. Mech. Engrg.
, vol.194
, pp. 267-296
-
-
Demkowicz, L.1
Buffa, A.2
-
12
-
-
77955230988
-
Scalar products of discrete differential forms
-
in preparation
-
F. Brezzi, A. Buffa, Scalar products of discrete differential forms, Tech. Rep., IMATI-CNR, 2007 (in preparation)
-
(2007)
Tech. Rep., IMATI-CNR
-
-
Brezzi, F.1
Buffa, A.2
-
13
-
-
25144443045
-
A family of mimetic finite difference methods on polygonal and polyhedral meshes
-
DOI 10.1142/S0218202505000832
-
F. Brezzi, K. Lipnikov, and V. Simoncini A family of mimetic finite difference methods on polygonal and polyhedral meshes Math. Models Methods Appl. Sci. 15 2005 1533 1551 (Pubitemid 41354369)
-
(2005)
Mathematical Models and Methods in Applied Sciences
, vol.15
, Issue.10
, pp. 1533-1551
-
-
Brezzi, F.1
Lipnikov, K.2
Simoncini, V.3
-
16
-
-
0000397429
-
Mimetic discretizations for Maxwells equations
-
J.M. Hyman, and M. Shashkov Mimetic discretizations for Maxwells equations J. Comput. Phys. 151 1999 881 909
-
(1999)
J. Comput. Phys.
, vol.151
, pp. 881-909
-
-
Hyman, J.M.1
Shashkov, M.2
|