메뉴 건너뛰기




Volumn 133, Issue 2, 1997, Pages 289-309

An analysis of finite volume, finite element, and finite difference methods using some concepts from algebraic topology

Author keywords

[No Author keywords available]

Indexed keywords

ALGEBRA; FINITE ELEMENT METHOD; FINITE VOLUME METHOD; NUMERICAL METHODS; TOPOLOGY;

EID: 0031570250     PISSN: 00219991     EISSN: None     Source Type: Journal    
DOI: 10.1006/jcph.1997.5656     Document Type: Article
Times cited : (106)

References (17)
  • 2
    • 0019057182 scopus 로고
    • Solution of the Poisson equation: Comparison of the Galerkin and control-volume methods
    • 2. S. Ramadhyani and S. V. Patankar, Solution of the Poisson equation: Comparison of the Galerkin and control-volume methods, Int. J. Methods Eng. 15, 1395 (1980).
    • (1980) Int. J. Methods Eng. , vol.15 , pp. 1395
    • Ramadhyani, S.1    Patankar, S.V.2
  • 3
    • 85058870301 scopus 로고
    • A comparison between finite element and finite volume methods in CFD
    • 3. E. Oñate and S. R. Idelsohn, A comparison between finite element and finite volume methods in CFD, Comput. Fluid Dyn. 1, 93 (1992).
    • (1992) Comput. Fluid Dyn. , vol.1 , pp. 93
    • Oñate, E.1    Idelsohn, S.R.2
  • 10
    • 0001539095 scopus 로고
    • High order finite volume approximations of differential operators on nonuniform grids
    • 10. J. M. Hyman, R. J. Knapp, and J. C. Scovel, High order finite volume approximations of differential operators on nonuniform grids, Physica D 60, 112 (1992).
    • (1992) Physica D , vol.60 , pp. 112
    • Hyman, J.M.1    Knapp, R.J.2    Scovel, J.C.3
  • 11
    • 0002115991 scopus 로고
    • An analysis of finite-difference and finite-volume formulations of conservation laws
    • 11. M. Vinokur, An analysis of finite-difference and finite-volume formulations of conservation laws, J. Comput. Phys. 81, 1 (1989).
    • (1989) J. Comput. Phys. , vol.81 , pp. 1
    • Vinokur, M.1
  • 14
    • 0001367435 scopus 로고
    • Support-operator finite-difference algorithms for general elliptic problems
    • 14. M. Shashkov and S. Steinberg, Support-operator finite-difference algorithms for general elliptic problems, J. Comput. Phys. 118, 131 (1995).
    • (1995) J. Comput. Phys. , vol.118 , pp. 131
    • Shashkov, M.1    Steinberg, S.2
  • 16
    • 0002320248 scopus 로고
    • Divergence preserving discrete surface integral methods for Maxwell curl equations using non-orthogonal unstructured grids
    • 16. N. K. Madsen, Divergence preserving discrete surface integral methods for Maxwell curl equations using non-orthogonal unstructured grids, J. Comput. Phys. 119, 34 (1995).
    • (1995) J. Comput. Phys. , vol.119 , pp. 34
    • Madsen, N.K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.