메뉴 건너뛰기




Volumn , Issue , 2009, Pages 122-135

Challenging statistical classification for operational usage: The ADSL case

Author keywords

Machine learning; Traffic classification

Indexed keywords

DEEP PACKET INSPECTION (DPI); NETWORK TRAFFIC; OPERATIONAL USAGE; POINTS OF PRESENCES; SITE-SPECIFIC INFORMATION; STATISTICAL CLASSIFICATION; STATISTICAL CLASSIFIER; TRAFFIC CLASSIFICATION;

EID: 77955143713     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1644893.1644908     Document Type: Conference Paper
Times cited : (46)

References (27)
  • 1
    • 84877782456 scopus 로고    scopus 로고
    • Kiss: Stochastic packet inspection
    • Springer : Lecture Notes in Computer Science, Vol 5537, 2009. May
    • M. Meo D. Rossi A. Finamore, M. Mellia. Kiss: Stochastic packet inspection. In COST 2009 : Springer : Lecture Notes in Computer Science, Vol 5537, 2009., May 2009.
    • (2009) COST 2009
    • Meo, M.D.1    Finamore, R.A.2    Mellia, M.3
  • 6
    • 84877769226 scopus 로고    scopus 로고
    • Fast Flux. http://www.darkreading.com/security/perimeter/showarticle. jhtml?articleid=208804630.
    • Fast, Flux
  • 13
    • 61749100211 scopus 로고    scopus 로고
    • Efficient application identification and the temporal and spatial stability of classification schema
    • W. Li, M. Canini, A. W. Moore, and R. Bolla. Efficient application identification and the temporal and spatial stability of classification schema. Computer Networks, 53(6):790 - 809, 2009.
    • (2009) Computer Networks , vol.53 , Issue.6 , pp. 790-809
    • Li, W.1    Canini, M.2    Moore, A.W.3    Bolla, R.4
  • 16
    • 67650312120 scopus 로고    scopus 로고
    • Revealing the unknown adsl traffic using statistical methods
    • Springer : Lecture Notes in Computer Science, Vol 5537, 2009. Aachen, Germany
    • M. Pietrzyk, G. Urvoy-Keller, and J.-L. Costeux. Revealing the unknown adsl traffic using statistical methods. In COST-TMA 2009 : Springer : Lecture Notes in Computer Science, Vol 5537, 2009., Aachen, Germany, 2009.
    • (2009) COST-TMA 2009
    • Pietrzyk, M.1    Urvoy-Keller, G.2    Costeux, J.-L.3
  • 20
    • 84877736804 scopus 로고    scopus 로고
    • Tstat. http://tstat.tlc.polito.it/.
    • Tstat
  • 21
    • 62849120844 scopus 로고    scopus 로고
    • A survey of techniques for internet traffic classification using machine learning
    • IEEE
    • G. Armitage, T.T.T. Nguyen. A survey of techniques for internet traffic classification using machine learning. Communications Surveys and Tutorials, IEEE, 10(4):56-76, 2008.
    • (2008) Communications Surveys and Tutorials , vol.10 , Issue.4 , pp. 56-76
    • Armitage, G.1    Nguyen, T.T.T.2
  • 22
    • 33750283653 scopus 로고    scopus 로고
    • A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification
    • N. Williams, S. Zander, and G. Armitage. A preliminary performance comparison of five machine learning algorithms for practical ip traffic flow classification. SIGCOMM Comput. Commun. Rev., 36(5):5-16, 2006.
    • (2006) SIGCOMM Comput. Commun. Rev. , vol.36 , Issue.5 , pp. 5-16
    • Williams, N.1    Zander, S.2    Armitage, G.3
  • 24
    • 84877774005 scopus 로고    scopus 로고
    • Youtube. http://youtube.com/.
    • Youtube
  • 25
    • 84877783366 scopus 로고    scopus 로고
    • eMule. http://www.emule-project.net/.
    • EMule
  • 26
    • 84875580842 scopus 로고    scopus 로고
    • Dailymotion. http://dailymotion.com/.
    • Dailymotion
  • 27
    • 84874663610 scopus 로고    scopus 로고
    • WEKA data mining. http://www.cs.waikato.ac.nz/ml/weka/.
    • WEKA Data Mining


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.