메뉴 건너뛰기




Volumn 8, Issue 4, 2010, Pages 1055-1101

Band-edge solitons, nonlinear schrödinger/gross-pitaevskii equations, and effective media

Author keywords

Bose Einstein condensates; Lyapunov Schmidt reduction; Multiple scales; Nonlinear optics

Indexed keywords

BAND EDGE; BLOCH STATE; BOSE-EINSTEIN CONDENSATES; BOUND STATE; CRITICAL POWER; DEFOCUSING; EFFECTIVE MASS; EFFECTIVE MEDIA; EIGEN FUNCTION; LYAPUNOV-SCHMIDT REDUCTION; MULTIPLE SCALE; NLS EQUATIONS; NON-LINEARITY; NONLINEAR COUPLING; NONLINEAR WAVES; NUMERICAL COMPUTATIONS; OPTICAL BEAMS; PERIODIC POTENTIALS; POINT OF SYMMETRY; SELF-FOCUSING; SPECTRAL BAND; SPECTRAL GAP; TRANSLATION INVARIANTS;

EID: 77955110225     PISSN: 15403459     EISSN: 15403467     Source Type: Journal    
DOI: 10.1137/090769417     Document Type: Article
Times cited : (38)

References (67)
  • 1
    • 33748573625 scopus 로고    scopus 로고
    • Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures
    • M.J. Ablowitz, B. Ilan, E. Schonbrun, and R. Piestun, Solitons in two-dimensional lattices possessing defects, dislocations, and quasicrystal structures, Phys. Rev. E (3), 74 (2006), p. 035601(R).
    • (2006) Phys. Rev. E , vol.3 , Issue.74
    • Ablowitz, M.J.1    Ilan, B.2    Schonbrun, E.3    Piestun, R.4
  • 3
    • 24344438633 scopus 로고    scopus 로고
    • Spectral renormalization method for computing selflocalized solutions to nonlinear systems
    • M.J. Ablowitz and Z.H. Musslimani, Spectral renormalization method for computing selflocalized solutions to nonlinear systems, Optim. Lett., 30 (2005), pp. 2140-2142.
    • (2005) Optim. Lett. , vol.30 , pp. 2140-2142
    • Ablowitz, M.J.1    Musslimani, Z.H.2
  • 4
    • 44049114539 scopus 로고
    • Existence of solutions for semilinear elliptic equations with indefinite linear part
    • S. Alama and Y.Y. Li, Existence of solutions for semilinear elliptic equations with indefinite linear part, J. Differential Equations, 96 (1992), pp. 89-115.
    • (1992) J. Differential Equations , vol.96 , pp. 89-115
    • Alama, S.1    Li, Y.Y.2
  • 5
    • 33847628291 scopus 로고    scopus 로고
    • Stationary localized modes of the quintic nonlinear Schrödinger equation with a periodic potential
    • G.L. Alfimov, V.V. Konotop, and P. Pacciani, Stationary localized modes of the quintic nonlinear Schrödinger equation with a periodic potential, Phys. Rev. A (3), 75 (2007), p. 023624.
    • (2007) Phys. Rev. A , vol.3 , Issue.75 , pp. 023624
    • Alfimov, G.L.1    Konotop, V.V.2    Pacciani, P.3
  • 6
    • 20644435366 scopus 로고    scopus 로고
    • Homogenization of the Schrödinger equation and effective mass theorems
    • G. Allaire and A. Piatnitski, Homogenization of the Schrödinger equation and effective mass theorems, Comm. Math. Phys., 258 (2005), pp. 1-22.
    • (2005) Comm. Math. Phys. , vol.258 , pp. 1-22
    • Allaire, G.1    Piatnitski, A.2
  • 7
    • 0037192073 scopus 로고    scopus 로고
    • Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability
    • B.B. Baizakov, V.V. Konotop, and M. Salerno, Regular spatial structures in arrays of Bose-Einstein condensates induced by modulational instability, J. Phys. B, 35 (2002), pp. 5105-5119.
    • (2002) J. Phys. B , vol.35 , pp. 5105-5119
    • Baizakov, B.B.1    Konotop, V.V.2    Salerno, M.3
  • 8
    • 37649028189 scopus 로고    scopus 로고
    • Multidimensional solitons in a lowdimensional periodic potential
    • B.B. Baizakov, B.A. Malomed, and M. Salerno, Multidimensional solitons in a lowdimensional periodic potential, Phys. Rev. A (3), 70 (2004), p. 053613.
    • (2004) Phys. Rev. A , vol.3 , Issue.70 , pp. 053613
    • Baizakov, B.B.1    Malomed, B.A.2    Salerno, M.3
  • 11
    • 84882298701 scopus 로고    scopus 로고
    • 3rd ed., Academic Press, New York
    • R.W. Boyd, Nonlinear Optics, 3rd ed., Academic Press, New York, 2008.
    • (2008) Nonlinear Optics
    • Boyd, R.W.1
  • 12
    • 14344256106 scopus 로고    scopus 로고
    • Theory of nonlinear matter waves in optical lattices
    • V.A. Brazhnyi and V.V. Konotop, Theory of nonlinear matter waves in optical lattices, Modern Phys. Lett. B, 18 (2004), pp. 627-651.
    • (2004) Modern Phys. Lett. B , vol.18 , pp. 627-651
    • Brazhnyi, V.A.1    Konotop, V.V.2
  • 13
    • 33144459263 scopus 로고    scopus 로고
    • Driving defect modes of Bose- Einstein condenstates in optical lattices
    • V.A. Brazhnyi, V.V. Konotop, and M. Pérez-Carcía, Driving defect modes of Bose- Einstein condenstates in optical lattices, Phys. Rev. Lett., 96 (2006), p. 060403.
    • (2006) Phys. Rev. Lett. , vol.96 , pp. 060403
    • Brazhnyi, V.A.1    Konotop, V.V.2    Pérez-Carcía, M.3
  • 14
    • 33750451942 scopus 로고    scopus 로고
    • Justification of the nonlinear Schrödinger equation in spatially periodic media
    • K. Busch, G. Schneider, L. Tkeshelashvili, and H. Uecker, Justification of the nonlinear Schrödinger equation in spatially periodic media, Z. Angew. Math. Phys., 57 (2006), pp. 905-936.
    • (2006) Z. Angew. Math. Phys. , vol.57 , pp. 905-936
    • Busch, K.1    Schneider, G.2    Tkeshelashvili, L.3    Uecker, H.4
  • 15
    • 45149099903 scopus 로고    scopus 로고
    • Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques
    • R. Carretero-Gonzalez, D.J. Frantzeskakis, and P.G. Kevrekides, Nonlinear waves in Bose-Einstein condensates: Physical relevance and mathematical techniques, Nonlinearity, 21 (2008), pp. R139-R202.
    • (2008) Nonlinearity , vol.21
    • Carretero-Gonzalez, R.1    Frantzeskakis, D.J.2    Kevrekides, P.G.3
  • 17
    • 30444445217 scopus 로고    scopus 로고
    • An effective mass theory for bright gap solitons in optical lattices
    • S.-C. Cheng, An effective mass theory for bright gap solitons in optical lattices, Chinese J. Phys., 43 (2005), pp. 835-846.
    • (2005) Chinese J. Phys. , vol.43 , pp. 835-846
    • Cheng, S.-C.1
  • 19
    • 2442581311 scopus 로고    scopus 로고
    • Purely nonlinear instability of standing waves with minimal energy
    • A. Comech and D.E. Pelinovsky, Purely nonlinear instability of standing waves with minimal energy, Commun. Pure Appl. Math., 56 (2003), pp. 1565-1607.
    • (2003) Commun. Pure Appl. Math. , vol.56 , pp. 1565-1607
    • Comech, A.1    Pelinovsky, D.E.2
  • 21
    • 84867925558 scopus 로고    scopus 로고
    • Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable potential
    • T. Dohnal, D. Pelinovsky, and G. Schneider, Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable potential, J. Nonlinear Sci., 19 (2009), pp. 95-131.
    • (2009) J. Nonlinear Sci. , vol.19 , pp. 95-131
    • Dohnal, T.1    Pelinovsky, D.2    Schneider, G.3
  • 22
    • 64249171838 scopus 로고    scopus 로고
    • Coupled mode equations and gap solitons for the 2D Gross- Pitaevskii equation with a non-separable periodic potential
    • T. Dohnal and H. Uecker, Coupled mode equations and gap solitons for the 2D Gross- Pitaevskii equation with a non-separable periodic potential, Phys. D, 238 (2009), pp. 860-879.
    • (2009) Phys. D , vol.238 , pp. 860-879
    • Dohnal, T.1    Uecker, H.2
  • 25
    • 77956733943 scopus 로고    scopus 로고
    • Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems
    • L. Erdös, B. Schlein, and H.T. Yau, Derivation of the cubic non-linear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., 59 (2007), pp. 1659-1741.
    • (2007) Invent. Math. , vol.59 , pp. 1659-1741
    • Erdös, L.1    Schlein, B.2    Yau, H.T.3
  • 26
    • 0000428455 scopus 로고    scopus 로고
    • Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices
    • S. Flach, K. Kladko, and R.S. MacKay, Energy thresholds for discrete breathers in one-, two-, and three-dimensional lattices, Phys. Rev. Lett., 78 (1997), pp. 1207-1210.
    • (1997) Phys. Rev. Lett. , vol.78 , pp. 1207-1210
    • Flach, S.1    Kladko, K.2    MacKay, R.S.3
  • 27
    • 84990563336 scopus 로고
    • Analysis of the linearization around a critical point of an infinitedimensional hamiltonian system
    • M.G. Grillakis, Analysis of the linearization around a critical point of an infinitedimensional hamiltonian system, Comm. Pure Appl. Math., 43 (1990), pp. 299-333.
    • (1990) Comm. Pure Appl. Math. , vol.43 , pp. 299-333
    • Grillakis, M.G.1
  • 28
    • 0000468151 scopus 로고
    • Stability theory of solitary waves in the presence of symmetry I
    • M.G. Grillakis, J. Shatah, and W.A. Strauss, Stability theory of solitary waves in the presence of symmetry, I, J. Funct. Anal., 74 (1987), pp. 160-197.
    • (1987) J. Funct. Anal. , vol.74 , pp. 160-197
    • Grillakis, M.G.1    Shatah, J.2    Strauss, W.A.3
  • 29
    • 0002470216 scopus 로고
    • Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation
    • H.P. Heinz, T. Küpper, and C.A. Stuart, Existence and bifurcation of solutions for nonlinear perturbations of the periodic Schrödinger equation, J. Differential Equations, 100 (1992), pp. 341-354.
    • (1992) J. Differential Equations , vol.100 , pp. 341-354
    • Heinz, H.P.1    Küpper, T.2    Stuart, C.A.3
  • 30
    • 0011047297 scopus 로고
    • Solvability of nonlinear equations in spectral gaps of the linearization
    • H.P. Heinz and C.A. Stuart, Solvability of nonlinear equations in spectral gaps of the linearization, Nonlinear Anal., 19 (1992), pp. 145-165.
    • (1992) Nonlinear Anal. , vol.19 , pp. 145-165
    • Heinz, H.P.1    Stuart, C.A.2
  • 32
    • 0007690410 scopus 로고
    • An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation
    • C.K.R.T. Jones, An instability mechanism for radially symmetric standing waves of a nonlinear Schrödinger equation, J. Differential Equations, 71 (1988), pp. 34-62.
    • (1988) J. Differential Equations , vol.71 , pp. 34-62
    • Jones, C.K.R.T.1
  • 33
    • 77956734736 scopus 로고    scopus 로고
    • The mass critical nonlinear Schrödinger equation with radial initial data in dimensions three and higher
    • R. Killip, M. Visan, and X. Zhang, The mass critical nonlinear Schrödinger equation with radial initial data in dimensions three and higher, Preprint arXiv:0708.0849v1, 2007.
    • (2007) Preprint arXiv:0708.0849v1
    • Killip, R.1    Visan, M.2    Zhang, X.3
  • 34
    • 0001130640 scopus 로고
    • Comparison theorems for the gap of Schrödinger operators
    • W. Kirsch and B. Simon, Comparison theorems for the gap of Schrödinger operators, J. Funct. Anal., 75 (1987), pp. 396-410.
    • (1987) J. Funct. Anal. , vol.75 , pp. 396-410
    • Kirsch, W.1    Simon, B.2
  • 37
    • 0011029446 scopus 로고
    • Gap-bifurcation for nonlinear perturbations of Hill's equation
    • T. Kupper and C.A. Stuart, Gap-bifurcation for nonlinear perturbations of Hill's equation, J. Reine Angew. Math., 409 (1990), pp. 23-52.
    • (1990) J. Reine Angew. Math. , vol.409 , pp. 23-52
    • Kupper, T.1    Stuart, C.A.2
  • 38
    • 0010956697 scopus 로고
    • Necessary and sufficient conditions for gap-bifurcation
    • T. Küpper and C.A. Stuart, Necessary and sufficient conditions for gap-bifurcation, Nonlinear Anal., 18 (1992), pp. 893-903.
    • (1992) Nonlinear Anal. , vol.18 , pp. 893-903
    • Küpper, T.1    Stuart, C.A.2
  • 41
    • 77955468166 scopus 로고    scopus 로고
    • A system of ODEs for a perturbation of a minimal mass soliton
    • to appear
    • J. Marzuola, S. Raynor, and G. Simpson, A system of ODEs for a perturbation of a minimal mass soliton, J. Nonlinear Sci., to appear.
    • J. Nonlinear Sci.
    • Marzuola, J.1    Raynor, S.2    Simpson, G.3
  • 42
    • 0038804031 scopus 로고    scopus 로고
    • Self-similar optical wave collapse: Observation of the Townes profile
    • K. Moll, G. Fibich, and A. Gaeta, Self-similar optical wave collapse: Observation of the Townes profile, Phys. Rev. Lett., 90 (2003), p. 203902.
    • (2003) Phys. Rev. Lett. , vol.90 , pp. 203902
    • Moll, K.1    Fibich, G.2    Gaeta, A.3
  • 43
    • 27844448598 scopus 로고    scopus 로고
    • Periodic nonlinear Schrödinger equation with application to photonic crystals
    • A. Pankov, Periodic nonlinear Schrödinger equation with application to photonic crystals, Milan J. Math., 73 (2005), pp. 259-287.
    • (2005) Milan J. Math. , vol.73 , pp. 259-287
    • Pankov, A.1
  • 44
    • 52449105521 scopus 로고    scopus 로고
    • Justification of the the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential
    • D.E. Pelinovsky and G. Schneider, Justification of the the coupled-mode approximation for a nonlinear elliptic problem with a periodic potential, Appl. Anal., 86 (2007), pp. 1017-1036.
    • (2007) Appl. Anal. , vol.86 , pp. 1017-1036
    • Pelinovsky, D.E.1    Schneider, G.2
  • 45
    • 37649031143 scopus 로고    scopus 로고
    • Bifurcations and stability of gap solitons in periodic potentials
    • D.E. Pelinovsky, A.A. Sukhorukov, and Y.S. Kivshar, Bifurcations and stability of gap solitons in periodic potentials, Phys. Rev. E (3), 70 (2004), p. 036618.
    • (2004) Phys. Rev. E , vol.3 , Issue.70 , pp. 036618
    • Pelinovsky, D.E.1    Sukhorukov, A.A.2    Kivshar, Y.S.3
  • 48
    • 0000173206 scopus 로고
    • On the bound states of the nonlinear Schrödinger equation with a linear potential
    • H.A. Rose and M.I. Weinstein, On the bound states of the nonlinear Schrödinger equation with a linear potential, Phys. D, 30 (1988), pp. 207-218.
    • (1988) Phys. D , vol.30 , pp. 207-218
    • Rose, H.A.1    Weinstein, M.I.2
  • 49
    • 2342561270 scopus 로고    scopus 로고
    • Dynamics of positive- And negative-mass solitons in optical lattices and inverted traps
    • H. Sakaguchi and B.A. Malomed, Dynamics of positive- And negative-mass solitons in optical lattices and inverted traps, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), pp. 1443-1459.
    • (2004) J. Phys. B: At. Mol. Opt. Phys. , vol.37 , pp. 1443-1459
    • Sakaguchi, H.1    Malomed, B.A.2
  • 50
    • 3042597421 scopus 로고    scopus 로고
    • Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps
    • H. Sakaguchi and B.A. Malomed, Two-dimensional loosely and tightly bound solitons in optical lattices and inverted traps, J. Phys. B: At. Mol. Opt. Phys., 37 (2004), pp. 2225-2239.
    • (2004) J. Phys. B: At. Mol. Opt. Phys. , vol.37 , pp. 2225-2239
    • Sakaguchi, H.1    Malomed, B.A.2
  • 51
    • 57649106991 scopus 로고    scopus 로고
    • Linear instability of two-dimensional low-Amplitude gap solitons near band edges in periodic media
    • Z. Shi, J. Wang, Z. Chen, and J. Yang, Linear instability of two-dimensional low-Amplitude gap solitons near band edges in periodic media, Phys. Rev. A (3), 78 (2008), p. 063812.
    • (2008) Phys. Rev. A , vol.3 , Issue.78 , pp. 063812
    • Shi, Z.1    Wang, J.2    Chen, Z.3    Yang, J.4
  • 52
    • 34248203162 scopus 로고    scopus 로고
    • Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media
    • Z. Shi and J. Yang, Solitary waves bifurcated from Bloch-band edges in two-dimensional periodic media, Phys. Rev. E (3), 75 (2007), p. 056602.
    • (2007) Phys. Rev. E , vol.3 , Issue.75 , pp. 056602
    • Shi, Z.1    Yang, J.2
  • 54
    • 54249143634 scopus 로고    scopus 로고
    • Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons
    • Y. Sivan, G. Fibich, B. Ilan, and M.I. Weinstein, Qualitative and quantitative analysis of stability and instability dynamics of positive lattice solitons, Phys. Rev. E (3), 78 (2008), p. 046602.
    • (2008) Phys. Rev. E , vol.3 , Issue.78 , pp. 046602
    • Sivan, Y.1    Fibich, G.2    Ilan, B.3    Weinstein, M.I.4
  • 55
    • 33745640744 scopus 로고    scopus 로고
    • Effective mass theorems for nonlinear Schrödinger equations
    • C. Sparber, Effective mass theorems for nonlinear Schrödinger equations, SIAM J. Appl. Math., 66 (2006), pp. 820-842.
    • (2006) SIAM J. Appl. Math. , vol.66 , pp. 820-842
    • Sparber, C.1
  • 56
    • 33846385938 scopus 로고    scopus 로고
    • Arresting soliton collapse in twodimensional nonlinear Schrödinger systems via spatiotemporal modulation of the external potential
    • K. Staliunas, R. Herrero, and G.J. de Valcárcel, Arresting soliton collapse in twodimensional nonlinear Schrödinger systems via spatiotemporal modulation of the external potential, Phys. Rev. E (3), 95 (2007), p. 011604.
    • (2007) Phys. Rev. E , vol.3 , Issue.95 , pp. 011604
    • Staliunas, K.1    Herrero, R.2    De Valcárcel, G.J.3
  • 57
    • 77956767230 scopus 로고    scopus 로고
    • Bloch function description of a Bose-Einstein condensate in a finite optical lattice
    • M.J. Steel and W. Zhang, Bloch function description of a Bose-Einstein condensate in a finite optical lattice, Preprint arXiv:cond-mat/9810284v1, 1998.
    • (1998) Preprint arXiv:cond-mat/9810284v1
    • Steel, M.J.1    Zhang, W.2
  • 58
    • 0041824045 scopus 로고    scopus 로고
    • Bifurcation from the essential spectrum
    • A. Matzeu and A. Vignoli, eds., Birkhauser, Basel, Switzerland
    • C. Stuart, Bifurcation from the essential spectrum, in Topological Nonlinear Analysis, A. Matzeu and A. Vignoli, eds., Birkhauser, Basel, Switzerland, 1997.
    • (1997) Topological Nonlinear Analysis
    • Stuart, C.1
  • 59
    • 0003230098 scopus 로고    scopus 로고
    • The nonlinear schrödinger equation: Self-focusing and wave collapse
    • Springer, Berlin
    • C. Sulem and P.-L. Sulem, The Nonlinear Schrödinger Equation: Self-Focusing and Wave Collapse, Applied Mathematical Sciences 139, Springer, Berlin, 1999.
    • (1999) Applied Mathematical Sciences , vol.139
    • Sulem, C.1    Sulem, P.-L.2
  • 61
    • 0041473959 scopus 로고
    • Nonlinear Schrödinger equations and sharp interpolation estimates
    • M.I. Weinstein, Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys., 87 (1983), pp. 567-576.
    • (1983) Comm. Math. Phys. , vol.87 , pp. 567-576
    • Weinstein, M.I.1
  • 62
    • 0000686130 scopus 로고
    • Modulational stability of ground states of nonlinear Schrödinger equations
    • M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations, SIAM J. Math. Anal., 16 (1985), pp. 472-491.
    • (1985) SIAM J. Math. Anal. , vol.16 , pp. 472-491
    • Weinstein, M.I.1
  • 63
    • 84990553584 scopus 로고
    • Lyapunov stability of ground states of nonlinear dispersive evolution equations
    • M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations, Comm. Pure Appl. Math., 39 (1986), pp. 51-68.
    • (1986) Comm. Pure Appl. Math. , vol.39 , pp. 51-68
    • Weinstein, M.I.1
  • 64
    • 0009156882 scopus 로고
    • The nonlinear schrödinger equation: singularity formation, stability and dispersion
    • M.I. Weinstein, The Nonlinear Schrödinger Equation: Singularity Formation, Stability and Dispersion, Contemp. Math., 99 (1989), pp. 213-232.
    • (1989) Contemp. Math. , vol.99 , pp. 213-232
    • Weinstein, M.I.1
  • 65
    • 0033130275 scopus 로고    scopus 로고
    • Excitation thresholds for nonlinear localized modes on lattices
    • M.I. Weinstein, Excitation thresholds for nonlinear localized modes on lattices, Nonlinearity, 12 (1999), pp. 673-691.
    • (1999) Nonlinearity , vol.12 , pp. 673-691
    • Weinstein, M.I.1
  • 67
    • 0242333233 scopus 로고    scopus 로고
    • Fundamental and vortex solitons in a two-dimensional optical lattice
    • J. Yang and Z.H. Musslimani, Fundamental and vortex solitons in a two-dimensional optical lattice, Optim. Lett., 28 (2003), pp. 2094-2096.
    • (2003) Optim. Lett. , vol.28 , pp. 2094-2096
    • Yang, J.1    Musslimani, Z.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.