메뉴 건너뛰기




Volumn 35, Issue 9-12, 2010, Pages 309-315

Some recent developments in cluster analysis

Author keywords

Agglomerative clustering; Divisive clustering; K Means; Model based clustering; Time constrained clustering; Unsupervised classification

Indexed keywords

AGGLOMERATIVE CLUSTERING; CONSTRAINED CLUSTERING; DIVISIVE CLUSTERING; K-MEANS; MODEL-BASED CLUSTERING; UNSUPERVISED CLASSIFICATION;

EID: 77954953205     PISSN: 14747065     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.pce.2009.07.014     Document Type: Article
Times cited : (27)

References (15)
  • 2
    • 43449126536 scopus 로고    scopus 로고
    • Synoptic reasons for heavy snowfall in the Polish-German lowlands
    • Bednorz E. Synoptic reasons for heavy snowfall in the Polish-German lowlands. Theor. Appl. Climatol 2008, 92:133-140.
    • (2008) Theor. Appl. Climatol , vol.92 , pp. 133-140
    • Bednorz, E.1
  • 3
    • 33846923918 scopus 로고    scopus 로고
    • Atmospheric circulation regimes: can cluster analysis provide the number?
    • Christiansen B. Atmospheric circulation regimes: can cluster analysis provide the number?. J. Climate 2007, 20:2229-2250.
    • (2007) J. Climate , vol.20 , pp. 2229-2250
    • Christiansen, B.1
  • 4
    • 47649122556 scopus 로고    scopus 로고
    • Robust estimation in the normal mixture model based on robust clustering
    • Cuesta-Albertos J.A., Matrán C., Mayo-Iscar A. Robust estimation in the normal mixture model based on robust clustering. J. Roy. Stat. Soc. B 2008, 70:779-802.
    • (2008) J. Roy. Stat. Soc. B , vol.70 , pp. 779-802
    • Cuesta-Albertos, J.A.1    Matrán, C.2    Mayo-Iscar, A.3
  • 5
    • 54949095122 scopus 로고    scopus 로고
    • Selection of variables for cluster analysis and classification rules
    • Fraiman R., Justel A., Svarc M. Selection of variables for cluster analysis and classification rules. J. Am. Stat. Assoc. 2008, 103:1294-1303.
    • (2008) J. Am. Stat. Assoc. , vol.103 , pp. 1294-1303
    • Fraiman, R.1    Justel, A.2    Svarc, M.3
  • 6
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on subsets of attributes
    • (including discussion)
    • Friedman J.H., Meulman J.J. Clustering objects on subsets of attributes. J. Roy. Stat. Soc. B 2004, 66:815-850. (including discussion).
    • (2004) J. Roy. Stat. Soc. B , vol.66 , pp. 815-850
    • Friedman, J.H.1    Meulman, J.J.2
  • 8
    • 33646677427 scopus 로고    scopus 로고
    • A new approach to cluster analysis: the clustering-function-based method
    • Li B. A new approach to cluster analysis: the clustering-function-based method. J. Roy. Stat. Soc. B 2006, 68:457-476.
    • (2006) J. Roy. Stat. Soc. B , vol.68 , pp. 457-476
    • Li, B.1
  • 10
    • 40849134349 scopus 로고    scopus 로고
    • Weather types and rainfall over Senegal. Part 1: observational analysis
    • Moron V., Robertson A.W., Ward M.N., Ndiaye O. Weather types and rainfall over Senegal. Part 1: observational analysis. J. Climate 2008, 21:266-287.
    • (2008) J. Climate , vol.21 , pp. 266-287
    • Moron, V.1    Robertson, A.W.2    Ward, M.N.3    Ndiaye, O.4
  • 11
    • 34249996085 scopus 로고    scopus 로고
    • Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering
    • Philipp A., Della-Marta P.M., Jacobeit J., Fereday D.R., Jones P.D., Moberg A., Wanner H. Long-term variability of daily North Atlantic-European pressure patterns since 1850 classified by simulated annealing clustering. J. Climate 2007, 20:4065-4095.
    • (2007) J. Climate , vol.20 , pp. 4065-4095
    • Philipp, A.1    Della-Marta, P.M.2    Jacobeit, J.3    Fereday, D.R.4    Jones, P.D.5    Moberg, A.6    Wanner, H.7
  • 12
    • 33645505223 scopus 로고    scopus 로고
    • Variable selection for model-based clustering
    • Raftery A.E., Dean N. Variable selection for model-based clustering. J. Am. Stat. Assoc. 2006, 101:168-178.
    • (2006) J. Am. Stat. Assoc. , vol.101 , pp. 168-178
    • Raftery, A.E.1    Dean, N.2
  • 13
    • 0033226736 scopus 로고    scopus 로고
    • Multiple regimes in Northern hemisphere height fields via mixture model clustering
    • Smyth P., Ide K., Ghil M. Multiple regimes in Northern hemisphere height fields via mixture model clustering. J. Atmos. Sci. 1999, 56:3703-3723.
    • (1999) J. Atmos. Sci. , vol.56 , pp. 3703-3723
    • Smyth, P.1    Ide, K.2    Ghil, M.3
  • 14
    • 34250645707 scopus 로고    scopus 로고
    • Circulation regimes: chaotic variability versus SST-forced predictability
    • Strauss D.M., Corti S., Molteni F. Circulation regimes: chaotic variability versus SST-forced predictability. J. Climate 2007, 20:2251-2272.
    • (2007) J. Climate , vol.20 , pp. 2251-2272
    • Strauss, D.M.1    Corti, S.2    Molteni, F.3
  • 15
    • 0242679438 scopus 로고    scopus 로고
    • Finding the number of clusters in a dataset
    • Sugar C.A., James G.M. Finding the number of clusters in a dataset. J. Am. Stat. Assoc. 2003, 98:750-763.
    • (2003) J. Am. Stat. Assoc. , vol.98 , pp. 750-763
    • Sugar, C.A.1    James, G.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.