메뉴 건너뛰기




Volumn 52, Issue 3-4, 2010, Pages 637-641

An accurate closed-form approximate solution for the quintic Duffing oscillator equation

Author keywords

Approximate solutions; Chebyshev polynomials; Nonlinear oscillator; Quintic Duffing equation

Indexed keywords

APPROXIMATE SOLUTION; CHEBYSHEV POLYNOMIALS; DUFFING EQUATIONS; NON-LINEAR OSCILLATORS; QUINTIC;

EID: 77954863397     PISSN: 08957177     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.mcm.2010.04.010     Document Type: Article
Times cited : (35)

References (10)
  • 3
    • 54049138060 scopus 로고    scopus 로고
    • Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators
    • Lai S.K., Lim C.W., Wu B.S., Wang C., Zeng Q.C., He X.F. Newton-harmonic balancing approach for accurate solutions to nonlinear cubic-quintic Duffing oscillators. Appl. Math. Modelling 2009, 33:852-866.
    • (2009) Appl. Math. Modelling , vol.33 , pp. 852-866
    • Lai, S.K.1    Lim, C.W.2    Wu, B.S.3    Wang, C.4    Zeng, Q.C.5    He, X.F.6
  • 4
    • 35548983428 scopus 로고    scopus 로고
    • On Lindstedt-Poincaré techniques for the quintic Duffing equation
    • Ramos J.I. On Lindstedt-Poincaré techniques for the quintic Duffing equation. Appl. Math. Comput. 2007, 193:303-310.
    • (2007) Appl. Math. Comput. , vol.193 , pp. 303-310
    • Ramos, J.I.1
  • 5
    • 68649086452 scopus 로고    scopus 로고
    • Nonlinear free vibration of an elastically restrained beam with a point mass via the Newton-harmonic balancing approach
    • Lim C.W., Xu R., Lai S.K., Yu Y.M., Yang Q. Nonlinear free vibration of an elastically restrained beam with a point mass via the Newton-harmonic balancing approach. Int. J. Nonlinear Sci. Numer. Simul. 2009, 10:661-674.
    • (2009) Int. J. Nonlinear Sci. Numer. Simul. , vol.10 , pp. 661-674
    • Lim, C.W.1    Xu, R.2    Lai, S.K.3    Yu, Y.M.4    Yang, Q.5
  • 6
    • 85024508693 scopus 로고
    • An approximate equivalent linearization technique for nonlinear oscillations
    • Denman J.H. An approximate equivalent linearization technique for nonlinear oscillations. J. Appl. Mech. 1969, 36:358-360.
    • (1969) J. Appl. Mech. , vol.36 , pp. 358-360
    • Denman, J.H.1
  • 7
    • 0015109170 scopus 로고
    • Determination of the period of nonlinear oscillations by means of Chebyshev polynomials
    • Jonckheere R.E. Determination of the period of nonlinear oscillations by means of Chebyshev polynomials. ZAMM Z. Angew. Math. Mech. 1971, 55:389-393.
    • (1971) ZAMM Z. Angew. Math. Mech. , vol.55 , pp. 389-393
    • Jonckheere, R.E.1
  • 8
    • 38249013661 scopus 로고
    • Cubication of non-linear oscillators using the principle of harmonic balance
    • Bravo Yuste S. Cubication of non-linear oscillators using the principle of harmonic balance. Int. J. Non-Linear Mech. 1992, 27:347-356.
    • (1992) Int. J. Non-Linear Mech. , vol.27 , pp. 347-356
    • Bravo Yuste, S.1
  • 10
    • 67649976598 scopus 로고    scopus 로고
    • An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method
    • Beléndez A., Méndez D.I., Fernández E., Marini S., Pascual I. An explicit approximate solution to the Duffing-harmonic oscillator by a cubication method. Phys. Lett. A 2009, 373:2805-2809.
    • (2009) Phys. Lett. A , vol.373 , pp. 2805-2809
    • Beléndez, A.1    Méndez, D.I.2    Fernández, E.3    Marini, S.4    Pascual, I.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.