-
3
-
-
0003897780
-
-
Clarendon, Oxford translated by Wolfram Stadler
-
Hagedorn P. Non-linear Oscillations (1988), Clarendon, Oxford translated by Wolfram Stadler
-
(1988)
Non-linear Oscillations
-
-
Hagedorn, P.1
-
4
-
-
0001315863
-
Application of the incremental harmonic balance method to cubic non-linearity systems
-
Cheung Y.K., Chen S.H., and Lau S.L. Application of the incremental harmonic balance method to cubic non-linearity systems. J. Sound Vib. 140 (1990) 273-286
-
(1990)
J. Sound Vib.
, vol.140
, pp. 273-286
-
-
Cheung, Y.K.1
Chen, S.H.2
Lau, S.L.3
-
5
-
-
0025887981
-
A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators
-
Cheung Y.K., Chen S.H., and Lau S.L. A modified Lindstedt-Poincaré method for certain strongly non-linear oscillators. Int. J. Non-Linear Mech. 26 (1991) 367-378
-
(1991)
Int. J. Non-Linear Mech.
, vol.26
, pp. 367-378
-
-
Cheung, Y.K.1
Chen, S.H.2
Lau, S.L.3
-
6
-
-
0001336588
-
Non-linear vibration of coupled Duffing oscillators by an improved incremental harmonic balance method
-
Leung A.Y.T., and Chui S.K. Non-linear vibration of coupled Duffing oscillators by an improved incremental harmonic balance method. J. Sound Vib. 181 (1995) 619-633
-
(1995)
J. Sound Vib.
, vol.181
, pp. 619-633
-
-
Leung, A.Y.T.1
Chui, S.K.2
-
8
-
-
0030567896
-
A power series approach for the study of periodic motion
-
Qaisi M.I. A power series approach for the study of periodic motion. J. Sound Vib. 196 (1996) 401-406
-
(1996)
J. Sound Vib.
, vol.196
, pp. 401-406
-
-
Qaisi, M.I.1
-
9
-
-
0012774908
-
Application of homotopy analysis method in nonlinear oscillations
-
Liao S.J., and Chwang A.T. Application of homotopy analysis method in nonlinear oscillations. J. Appl. Mech.-Trans. ASME 65 (1998) 914-922
-
(1998)
J. Appl. Mech.-Trans. ASME
, vol.65
, pp. 914-922
-
-
Liao, S.J.1
Chwang, A.T.2
-
10
-
-
1642618671
-
Harmonic balance approach to periodic solutions of non-linear Jerk equations
-
Gottlieb H.P.W. Harmonic balance approach to periodic solutions of non-linear Jerk equations. J. Sound Vib. 271 (2004) 671-683
-
(2004)
J. Sound Vib.
, vol.271
, pp. 671-683
-
-
Gottlieb, H.P.W.1
-
11
-
-
15944389556
-
Improved Lindstedt-Poincaré method for the solution of nonlinear problems
-
Amore P., and Aranda A. Improved Lindstedt-Poincaré method for the solution of nonlinear problems. J. Sound Vib. 283 (2005) 1115-1136
-
(2005)
J. Sound Vib.
, vol.283
, pp. 1115-1136
-
-
Amore, P.1
Aranda, A.2
-
12
-
-
22344440752
-
Simplified continuous finite element method for a class of nonlinear oscillating equations
-
Xiong Z.G., and Hu H. Simplified continuous finite element method for a class of nonlinear oscillating equations. J. Sound Vib. 287 (2005) 367-373
-
(2005)
J. Sound Vib.
, vol.287
, pp. 367-373
-
-
Xiong, Z.G.1
Hu, H.2
-
13
-
-
33646517251
-
Solutions of nonlinear oscillators with fractional powers by an iteration procedure
-
Hu H. Solutions of nonlinear oscillators with fractional powers by an iteration procedure. J. Sound Vib. 294 (2006) 608-614
-
(2006)
J. Sound Vib.
, vol.294
, pp. 608-614
-
-
Hu, H.1
-
14
-
-
33748757919
-
Solutions of a quadratic nonlinear oscillator: iteration procedure
-
Hu H. Solutions of a quadratic nonlinear oscillator: iteration procedure. J. Sound Vib. 298 (2006) 1159-1165
-
(2006)
J. Sound Vib.
, vol.298
, pp. 1159-1165
-
-
Hu, H.1
-
15
-
-
0141504330
-
Exact travelling wave solutions for a class of nonlinear partial differential equations
-
Xie F., and Gao X. Exact travelling wave solutions for a class of nonlinear partial differential equations. Chaos Soliton Fract 19 (2004) 1113-1117
-
(2004)
Chaos Soliton Fract
, vol.19
, pp. 1113-1117
-
-
Xie, F.1
Gao, X.2
-
16
-
-
0038294438
-
A new analytical approach to the Duffing-harmonic oscillator
-
Lim C.W., and Wu B.S. A new analytical approach to the Duffing-harmonic oscillator. Phys. Lett. A 311 (2003) 365-373
-
(2003)
Phys. Lett. A
, vol.311
, pp. 365-373
-
-
Lim, C.W.1
Wu, B.S.2
-
17
-
-
33748066633
-
Solutions of the Duffing-harmonic oscillator by an iteration procedure
-
Hu H. Solutions of the Duffing-harmonic oscillator by an iteration procedure. J. Sound Vib. 298 (2006) 446-452
-
(2006)
J. Sound Vib.
, vol.298
, pp. 446-452
-
-
Hu, H.1
-
18
-
-
85024599513
-
Large-amplitude free vibrations of a beam
-
Wagner H. Large-amplitude free vibrations of a beam. J. Appl. Mech.-Trans. ASME 32 (1965) 887-892
-
(1965)
J. Appl. Mech.-Trans. ASME
, vol.32
, pp. 887-892
-
-
Wagner, H.1
-
19
-
-
0031555687
-
On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass
-
Hamdan M.N., and Shabaneh N.H. On the large amplitude free vibrations of a restrained uniform beam carrying an intermediate lumped mass. J. Sound Vib. 199 (1997) 711-736
-
(1997)
J. Sound Vib.
, vol.199
, pp. 711-736
-
-
Hamdan, M.N.1
Shabaneh, N.H.2
-
20
-
-
0000179552
-
Homoclinic and heteroclinic bifurcations in the non-linear dynamics of a beam resting on an elastic substrate
-
Lenci S., Menditto G., and Tarantino A.M. Homoclinic and heteroclinic bifurcations in the non-linear dynamics of a beam resting on an elastic substrate. Int. J. Non-Linear Mech. 34 (1999) 615-632
-
(1999)
Int. J. Non-Linear Mech.
, vol.34
, pp. 615-632
-
-
Lenci, S.1
Menditto, G.2
Tarantino, A.M.3
-
21
-
-
4644244179
-
A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations
-
Yan Z. A new sine-Gordon equation expansion algorithm to investigate some special nonlinear differential equations. Chaos Soliton Fract 23 (2005) 767-775
-
(2005)
Chaos Soliton Fract
, vol.23
, pp. 767-775
-
-
Yan, Z.1
-
22
-
-
33645091894
-
Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term
-
Huang D.J., and Zhang H.Q. Link between travelling waves and first order nonlinear ordinary differential equation with a sixth-degree nonlinear term. Chaos Soliton Fract 29 (2006) 928-941
-
(2006)
Chaos Soliton Fract
, vol.29
, pp. 928-941
-
-
Huang, D.J.1
Zhang, H.Q.2
-
23
-
-
0041703038
-
Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model
-
Maǐmistov A.I. Propagation of an ultimately short electromagnetic pulse in a nonlinear medium described by the fifth-order Duffing model. Opt. Spectrosc. 94 (2003) 251-257
-
(2003)
Opt. Spectrosc.
, vol.94
, pp. 251-257
-
-
Maǐmistov, A.I.1
-
24
-
-
0035686567
-
A method for obtaining approximate analytic periods for a class of nonlinear oscillators
-
Wu B.S., and Li P.S. A method for obtaining approximate analytic periods for a class of nonlinear oscillators. Meccanica 36 (2001) 167-176
-
(2001)
Meccanica
, vol.36
, pp. 167-176
-
-
Wu, B.S.1
Li, P.S.2
-
25
-
-
0037412162
-
Analytical approximation to large-amplitude oscillation of a non-linear conservative system
-
Wu B.S., Lim C.W., and Ma Y.F. Analytical approximation to large-amplitude oscillation of a non-linear conservative system. Int. J. Non-Linear Mech. 38 (2003) 1037-1043
-
(2003)
Int. J. Non-Linear Mech.
, vol.38
, pp. 1037-1043
-
-
Wu, B.S.1
Lim, C.W.2
Ma, Y.F.3
-
26
-
-
13444260836
-
Accurate higher-order approximations to frequencies of nonlinear oscillators with fractional powers
-
Lim C.W., and Wu B.S. Accurate higher-order approximations to frequencies of nonlinear oscillators with fractional powers. J. Sound Vib. 281 (2005) 1157-1162
-
(2005)
J. Sound Vib.
, vol.281
, pp. 1157-1162
-
-
Lim, C.W.1
Wu, B.S.2
-
27
-
-
0035650191
-
A new approximate analytical approach for dispersion relation of the nonlinear Klein-Gordon equation
-
Lim C.W., Wu B.S., and He L.H. A new approximate analytical approach for dispersion relation of the nonlinear Klein-Gordon equation. Chaos 11 (2001) 843-848
-
(2001)
Chaos
, vol.11
, pp. 843-848
-
-
Lim, C.W.1
Wu, B.S.2
He, L.H.3
-
28
-
-
33748424980
-
An analytical approximate technique for a class of strongly nonlinear oscillators
-
Wu B.S., Sun W.P., and Lim C.W. An analytical approximate technique for a class of strongly nonlinear oscillators. Int. J. Non-Linear Mech. 41 (2006) 766-774
-
(2006)
Int. J. Non-Linear Mech.
, vol.41
, pp. 766-774
-
-
Wu, B.S.1
Sun, W.P.2
Lim, C.W.3
|