메뉴 건너뛰기




Volumn 37, Issue 4, 2010, Pages 402-415

A novel method to identify the condition-specific regulatory sub-network that controls the yeast cell cycle based on gene expression model

Author keywords

Cell cycle; Condition specific sub network; Differential equation model; Gene expression model; Gene regulatory network

Indexed keywords


EID: 77954766916     PISSN: 10003282     EISSN: None     Source Type: Journal    
DOI: 10.3724/SP.J.1206.2009.00581     Document Type: Article
Times cited : (1)

References (34)
  • 1
    • 4644326931 scopus 로고    scopus 로고
    • Genomic analysis of regulatory network dynamics reveals large topological changes
    • Luscombe N M, Babu M M, Yu H, et al. Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 2004, 431(7006): 308-312
    • (2004) Nature , vol.431 , Issue.7006 , pp. 308-312
    • Luscombe, N.M.1    Babu, M.M.2    Yu, H.3
  • 2
    • 20344379457 scopus 로고    scopus 로고
    • Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli
    • Balazsi G, Barabasi A L, Oltvai Z N. Topological units of environmental signal processing in the transcriptional regulatory network of Escherichia coli. Proc of Nat Acad Sci, 2005, 102(22): 7841-7846
    • (2005) Proc of Nat Acad Sci , vol.102 , Issue.22 , pp. 7841-7846
    • Balazsi, G.1    Barabasi, A.L.2    Oltvai, Z.N.3
  • 4
    • 10744226222 scopus 로고    scopus 로고
    • Computational discovery of gene modules and regulatory networks
    • Bar-Joseph Z, Gerber G K, Lee T I, et al. Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 2003, 21(11): 1337-1342
    • (2003) Nature Biotechnology , vol.21 , Issue.11 , pp. 1337-1342
    • Bar-Joseph, Z.1    Gerber, G.K.2    Lee, T.I.3
  • 5
    • 1542357674 scopus 로고    scopus 로고
    • Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data
    • Tanay A, Sharan R, Kupiec M, et al. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proc of Nat Acad Sci, 2004, 101(9): 2981-2986
    • (2004) Proc of Nat Acad Sci , vol.101 , Issue.9 , pp. 2981-2986
    • Tanay, A.1    Sharan, R.2    Kupiec, M.3
  • 6
    • 33751222851 scopus 로고    scopus 로고
    • Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle
    • Wu W S, Li W H, Chen B S. Computational reconstruction of transcriptional regulatory modules of the yeast cell cycle. BMC Bioinformatics, 2006, 7(1): 421-435
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 421-435
    • Wu, W.S.1    Li, W.H.2    Chen, B.S.3
  • 7
    • 0037174671 scopus 로고    scopus 로고
    • Transcriptional regulatory networks in Saccharomyces cerevisiae
    • Lee T I, Rinaldi N J, Robert F, et al. Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 2002, 298(5594): 799-804
    • (2002) Science , vol.298 , Issue.5594 , pp. 799-804
    • Lee, T.I.1    Rinaldi, N.J.2    Robert, F.3
  • 8
    • 0037174670 scopus 로고    scopus 로고
    • Network motifs: Simple building blocks of complex networks
    • Milo R, Shen-Orr S, Itzkovitz S, et al. Network motifs: simple building blocks of complex networks. Science, 2002, 298(5594): 824-827
    • (2002) Science , vol.298 , Issue.5594 , pp. 824-827
    • Milo, R.1    Shen-Orr, S.2    Itzkovitz, S.3
  • 9
    • 4544352942 scopus 로고    scopus 로고
    • Transcriptional regulatory code of a eukaryotic genome
    • Harbison C T, Gordon D B, Lee T I, et al. Transcriptional regulatory code of a eukaryotic genome. Nature, 2004, 431(7004): 99-104
    • (2004) Nature , vol.431 , Issue.7004 , pp. 99-104
    • Harbison, C.T.1    Gordon, D.B.2    Lee, T.I.3
  • 10
    • 46249096061 scopus 로고    scopus 로고
    • High-resolution analysis of condition-specific regulatory modules in Saccharomyces cerevisiae
    • Lee H G, Lee H S, Jeon S H, et al. High-resolution analysis of condition-specific regulatory modules in Saccharomyces cerevisiae. Genome Biology, 2008, 90(1): R2-R22
    • (2008) Genome Biology , vol.90 , Issue.1
    • Lee, H.G.1    Lee, H.S.2    Jeon, S.H.3
  • 11
    • 0345824737 scopus 로고    scopus 로고
    • Network component analysis: Reconstruction of regulatory signals in biological systems
    • Liao J C, Boscolo R, Yang Y L, et al. Network component analysis: Reconstruction of regulatory signals in biological systems. Proc Natl Acad Sci USA, 2003, 100(26): 15522-15527
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.26 , pp. 15522-15527
    • Liao, J.C.1    Boscolo, R.2    Yang, Y.L.3
  • 12
    • 52349095482 scopus 로고    scopus 로고
    • Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression
    • Boorsma A, Lu X J, Zakrzewska A, et al. Inferring condition-specific modulation of transcription factor activity in yeast through regulon-based analysis of genomewide expression. PLoS ONE, 2008, 3(9): e3112-e3121
    • (2008) PLoS ONE , vol.3 , Issue.9
    • Boorsma, A.1    Lu, X.J.2    Zakrzewska, A.3
  • 13
    • 33846521053 scopus 로고    scopus 로고
    • Reconstructing dynamic regulatory maps
    • Ernst J, Vainas O, Harbison C T, et al. Reconstructing dynamic regulatory maps. Mol Syst Biol, 2007,3(3): 74-86
    • (2007) Mol Syst Biol , vol.3 , Issue.3 , pp. 74-86
    • Ernst, J.1    Vainas, O.2    Harbison, C.T.3
  • 14
    • 34147094762 scopus 로고    scopus 로고
    • Inferring pairwise regulatory relationships from multiple time series datasets
    • Shi Y, Mitchell T, Bar-Joseph Z. Inferring pairwise regulatory relationships from multiple time series datasets. Bioinformatics, 2007, 23(6): 755-763
    • (2007) Bioinformatics , vol.23 , Issue.6 , pp. 755-763
    • Shi, Y.1    Mitchell, T.2    Bar-Joseph, Z.3
  • 15
    • 43349086434 scopus 로고    scopus 로고
    • Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data
    • Kim J, Bates D G, Postlethwaite I, et al. Linear time-varying models can reveal non-linear interactions of biomolecular regulatory networks using multiple time-series data. Bioinformatics, 2008, 24(10): 1286-1292
    • (2008) Bioinformatics , vol.24 , Issue.10 , pp. 1286-1292
    • Kim, J.1    Bates, D.G.2    Postlethwaite, I.3
  • 16
    • 33745797057 scopus 로고    scopus 로고
    • Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae
    • Kim H, Hu W, Kluger Y. Unraveling condition specific gene transcriptional regulatory networks in Saccharomyces cerevisiae. BMC Bioinformatics, 2006, 7(1): 165-181
    • (2006) BMC Bioinformatics , vol.7 , Issue.1 , pp. 165-181
    • Kim, H.1    Hu, W.2    Kluger, Y.3
  • 18
    • 0036699526 scopus 로고    scopus 로고
    • Revealing modular organization in the yeast transcriptional network
    • Ihmels J, Friedlander G, Bergmann S, et al. Revealing modular organization in the yeast transcriptional network. Nat Genet, 2002, 31(4): 370-377
    • (2002) Nat Genet , vol.31 , Issue.4 , pp. 370-377
    • Ihmels, J.1    Friedlander, G.2    Bergmann, S.3
  • 19
    • 0033707946 scopus 로고    scopus 로고
    • Using bayesian networks to analyze expression data
    • Friedman N, Linial M, Nachman I, et al. Using bayesian networks to analyze expression data. J Comput Biol, 2000, 7(3-4): 601-620
    • (2000) J Comput Biol , vol.7 , Issue.3-4 , pp. 601-620
    • Friedman, N.1    Linial, M.2    Nachman, I.3
  • 21
    • 0036772705 scopus 로고    scopus 로고
    • Gene perturbation and intervention in probabilistic Boolean networks
    • Shmulevich I, Dougherty E R, Zhang W. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics, 2002, 18(10): 1319-1331
    • (2002) Bioinformatics , vol.18 , Issue.10 , pp. 1319-1331
    • Shmulevich, I.1    Dougherty, E.R.2    Zhang, W.3
  • 22
    • 0345598902 scopus 로고    scopus 로고
    • Random boolean network models and the yeast transcriptional network
    • Kauffrnan S, Peterson C, Samuelsson B, et al. Random boolean network models and the yeast transcriptional network. Proc Natl Acad Sci USA, 2003, 100(25): 14796-14799
    • (2003) Proc Natl Acad Sci USA , vol.100 , Issue.25 , pp. 14796-14799
    • Kauffrnan, S.1    Peterson, C.2    Samuelsson, B.3
  • 23
    • 33847260655 scopus 로고    scopus 로고
    • Boolean networks using the chi-square test for inferring large-scale gene regulatory networks
    • Kim H, Lee J K, Park T. Boolean networks using the chi-square test for inferring large-scale gene regulatory networks. BMC Bioinformatics, 2007, 8(2): 37-51
    • (2007) BMC Bioinformatics , vol.8 , Issue.2 , pp. 37-51
    • Kim, H.1    Lee, J.K.2    Park, T.3
  • 24
    • 33846703173 scopus 로고    scopus 로고
    • Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae
    • Vu T T, Vohradsky J. Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae. Nucl Acids Res, 2007, 35(1): 279-287
    • (2007) Nucl Acids Res , vol.35 , Issue.1 , pp. 279-287
    • Vu, T.T.1    Vohradsky, J.2
  • 25
    • 20844452570 scopus 로고    scopus 로고
    • A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae
    • Chen K C, Wang T Y, Tseng H H, et al. A stochastic differential equation model for quantifying transcriptional regulatory network in Saccharomyces cerevisiae. Bioinformatics, 2005, 21(12): 2883-2890
    • (2005) Bioinformatics , vol.21 , Issue.12 , pp. 2883-2890
    • Chen, K.C.1    Wang, T.Y.2    Tseng, H.H.3
  • 26
    • 0034760495 scopus 로고    scopus 로고
    • Dynamic models of gene expression and classification
    • Dewey T G, Galas D J. Dynamic models of gene expression and classification. Functional & Integrative Genomics, 2001, 1(4): 269-278
    • (2001) Functional & Integrative Genomics , vol.1 , Issue.4 , pp. 269-278
    • Dewey, T.G.1    Galas, D.J.2
  • 27
    • 0038066608 scopus 로고    scopus 로고
    • Mining gene expression data using a novel approach based on hidden Markov models
    • Ji X, Li Ling J, Sun Z. Mining gene expression data using a novel approach based on hidden Markov models. FEBS Letters, 2003, 542(1-3): 125-131
    • (2003) FEBS Letters , vol.542 , Issue.1-3 , pp. 125-131
    • Ji, X.1    Li Ling, J.2    Sun, Z.3
  • 28
    • 0035082045 scopus 로고    scopus 로고
    • Neural network model of gene expression
    • DOI 10.1096/fj.00-0361com
    • Vohradsky J. Neural network model of gene expression. The FASEB J, 2001, 15(3): 846-854 (Pubitemid 32246003)
    • (2001) FASEB Journal , vol.15 , Issue.3 , pp. 846-854
    • Vohradsky, J.1
  • 29
    • 0031742022 scopus 로고    scopus 로고
    • Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization
    • Spellman P, Sherlock G, Zhang M, et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol Biol Cell, 1998, 9(12): 3273-3297
    • (1998) Mol Biol Cell , vol.9 , Issue.12 , pp. 3273-3297
    • Spellman, P.1    Sherlock, G.2    Zhang, M.3
  • 30
    • 0032112293 scopus 로고    scopus 로고
    • A genome-wide transcriptional analysis of the mitotic cell cycle
    • Cho R J, Campbell M J, Winzeler E A, et al. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecular Cell, 1998, 2(1): 65-73
    • (1998) Molecular Cell , vol.2 , Issue.1 , pp. 65-73
    • Cho, R.J.1    Campbell, M.J.2    Winzeler, E.A.3
  • 31
    • 33644873683 scopus 로고    scopus 로고
    • The YEASTRACT database: A tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae
    • Teixeira M C, Monteiro P, Jain P, et al. The YEASTRACT database: a tool for the analysis of transcription regulatory associations in Saccharomyces cerevisiae. Nucl Acids Res, 2006, 34(suppl-l): D446-D451
    • (2006) Nucl Acids Res , vol.34 , Issue.SUPPL. 1
    • Teixeira, M.C.1    Monteiro, P.2    Jain, P.3
  • 32
    • 0015799327 scopus 로고
    • Messenger RNA in HeLa cells: Kinetics of formation and decay
    • Singer R H, Penman S. Messenger RNA in HeLa cells: kinetics of formation and decay. J Mol Biol, 1973,78(2): 321-334.
    • (1973) J Mol Biol , vol.78 , Issue.2 , pp. 321-334
    • Singer, R.H.1    Penman, S.2
  • 33
    • 0032612220 scopus 로고    scopus 로고
    • Linear modeling of mRNA expression levels during CNS development and injury
    • D' Haeseleer P, Wen X, Fuhrman S, et al. Linear modeling of mRNA expression levels during CNS development and injury. Pacific Symposium on Biocomputing, 1999, 4(1): 41-52
    • (1999) Pacific Symposium on Biocomputing , vol.4 , Issue.1 , pp. 41-52
    • Haeseleer, P.D.'.1    Wen, X.2    Fuhrman, S.3
  • 34
    • 17944372930 scopus 로고    scopus 로고
    • Serial regulation of transcriptional regulators in the yeast cell cycle
    • Simon I, Barnett J, Hannett N, et al. Serial regulation of transcriptional regulators in the yeast cell cycle. Cell, 2001, 106(6): 697-708
    • (2001) Cell , vol.106 , Issue.6 , pp. 697-708
    • Simon, I.1    Barnett, J.2    Hannett, N.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.