-
1
-
-
36049058870
-
-
10.1103/PhysRev.163.612
-
G. D. Mahan, Phys. Rev. 163, 612 (1967). 10.1103/PhysRev.163.612
-
(1967)
Phys. Rev.
, vol.163
, pp. 612
-
-
Mahan, G.D.1
-
3
-
-
0001682644
-
-
References to theoretical and experimental papers on the Fermi-edge singularity can be found in the review, 10.1103/RevModPhys.62.929
-
References to theoretical and experimental papers on the Fermi-edge singularity can be found in the review K. Ohtaka and Y. Tanabe, Rev. Mod. Phys. 62, 929 (1990). 10.1103/RevModPhys.62.929
-
(1990)
Rev. Mod. Phys.
, vol.62
, pp. 929
-
-
Ohtaka, K.1
Tanabe, Y.2
-
5
-
-
0000873879
-
-
10.1103/PhysRevB.46.15337
-
K. A. Matveev and A. I. Larkin, Phys. Rev. B 46, 15337 (1992). 10.1103/PhysRevB.46.15337
-
(1992)
Phys. Rev. B
, vol.46
, pp. 15337
-
-
Matveev, K.A.1
Larkin, A.I.2
-
6
-
-
0000928012
-
-
10.1103/PhysRevLett.72.2061
-
A. K. Geim, P. C. Main, N. La Scala, L. Eaves, T. J. Foster, P. H. Beton, J. W. Sakai, F. W. Sheard, M. Henini, G. Hill, and M. A. Pate, Phys. Rev. Lett. 72, 2061 (1994). 10.1103/PhysRevLett.72.2061
-
(1994)
Phys. Rev. Lett.
, vol.72
, pp. 2061
-
-
Geim, A.K.1
Main, P.C.2
La Scala, N.3
Eaves, L.4
Foster, T.J.5
Beton, P.H.6
Sakai, J.W.7
Sheard, F.W.8
Henini, M.9
Hill, G.10
Pate, M.A.11
-
7
-
-
33947209993
-
-
10.1103/PhysRevB.75.115315
-
E. E. Vdovin, Yu. N. Khanin, O. Makarovsky, Yu. V. Dubrovskii, A. Patané, L. Eaves, M. Henini, C. J. Mellor, K. A. Benedict, and R. Airey, Phys. Rev. B 75, 115315 (2007). 10.1103/PhysRevB.75.115315
-
(2007)
Phys. Rev. B
, vol.75
, pp. 115315
-
-
Vdovin, E.E.1
Khanin, Yu.N.2
Makarovsky, O.3
Dubrovskii, Yu.V.4
Patané, A.5
Eaves, L.6
Henini, M.7
Mellor, C.J.8
Benedict, K.A.9
Airey, R.10
-
9
-
-
37649027456
-
-
10.1103/PhysRevB.69.165302
-
M. Gryglas, M. Baj, B. Chenaud, B. Jouault, A. Cavanna, and G. Faini, Phys. Rev. B 69, 165302 (2004). 10.1103/PhysRevB.69.165302
-
(2004)
Phys. Rev. B
, vol.69
, pp. 165302
-
-
Gryglas, M.1
Baj, M.2
Chenaud, B.3
Jouault, B.4
Cavanna, A.5
Faini, G.6
-
10
-
-
33746444419
-
-
10.1103/PhysRevB.74.035329
-
H. Frahm, C. von Zobeltitz, N. Maire, and R. J. Haug, Phys. Rev. B 74, 035329 (2006). 10.1103/PhysRevB.74.035329
-
(2006)
Phys. Rev. B
, vol.74
, pp. 035329
-
-
Frahm, H.1
Von Zobeltitz, C.2
Maire, N.3
Haug, R.J.4
-
11
-
-
34347398262
-
-
10.1103/PhysRevB.75.233304
-
N. Maire, F. Hohls, T. Ludtke, K. Pierz, and R. J. Haug, Phys. Rev. B 75, 233304 (2007). 10.1103/PhysRevB.75.233304
-
(2007)
Phys. Rev. B
, vol.75
, pp. 233304
-
-
Maire, N.1
Hohls, F.2
Ludtke, T.3
Pierz, K.4
Haug, R.J.5
-
12
-
-
55849141666
-
-
10.1063/1.3009284
-
M. Rüth, T. Slobodskyy, C. Gould, G. Schmidt, and L. W. Molenkamp, Appl. Phys. Lett. 93, 182104 (2008). 10.1063/1.3009284
-
(2008)
Appl. Phys. Lett.
, vol.93
, pp. 182104
-
-
Rüth, M.1
Slobodskyy, T.2
Gould, C.3
Schmidt, G.4
Molenkamp, L.W.5
-
13
-
-
35949024727
-
-
10.1103/PhysRevB.32.1472
-
Y. Ma, Phys. Rev. B 32, 1472 (1985), to incorporate superconducting gap into A (ω), was restricted to the second order in α and yielded an unphysical result: finite in-gap absorption. 10.1103/PhysRevB.32.1472
-
(1985)
Phys. Rev. B
, vol.32
, pp. 1472
-
-
Ma, Y.1
-
19
-
-
77954740842
-
-
It is easy to see that the singular contribution to Ľ (t) emerges from the domain where tk+2, tk+1 are close to t, while tk-1 is close to zero, see Fig.. In this domain, a large phase, i3Δt, is accumulated along the path, 0→t→0→t. This phase readily transforms into anomalous contribution, α α2 √ ω-3Δ, to A (ω). On the other hand, it is apparent that this contribution, being perturbative in α, must be fictitious. Indeed, it can be demonstrated that this contribution is cancelled by the lowest-order shake-up process.
-
It is easy to see that the singular contribution to L ̌(t) emerges from the domain where t k + 2, t k + 1 are close to t, while t k - 1 is close to zero, see Fig.. In this domain, a large phase, i 3 Δ t, is accumulated along the path, 0 → t → 0 → t. This phase readily transforms into anomalous contribution, α α 2 √ ω - 3 Δ, to A (ω). On the other hand, it is apparent that this contribution, being perturbative in α, must be fictitious. Indeed, it can be demonstrated that this contribution is cancelled by the lowest-order shake-up process.
-
-
-
-
20
-
-
77954755947
-
-
More precisely, to recover stationary in-gap states, one has to perform (-∞,∞ ) integrations instead of limited integration intervals in Eqs..
-
More precisely, to recover stationary in-gap states, one has to perform (- ∞, ∞) integrations instead of limited integration intervals in Eqs..
-
-
-
-
21
-
-
4243908500
-
-
10.1103/PhysRevLett.71.2995;
-
A. O. Gogolin, Phys. Rev. Lett. 71, 2995 (1993) 10.1103/PhysRevLett.71. 2995
-
(1993)
Phys. Rev. Lett.
, vol.71
, pp. 2995
-
-
Gogolin, A.O.1
-
23
-
-
33845741671
-
-
10.1103/PhysRevLett.97.256403
-
G. A. Fiete, Phys. Rev. Lett. 97, 256403 (2006). 10.1103/PhysRevLett.97. 256403
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 256403
-
-
Fiete, G.A.1
|