메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1039-1046

A study on interestingness measures for associative classifiers

Author keywords

associative classifiers; interestingness measures

Indexed keywords

ASSOCIATION RULE MINING; ASSOCIATIVE CLASSIFICATION; ASSOCIATIVE CLASSIFIERS; CLASS LABELS; DATA SETS; INTERESTINGNESS MEASURES; MACHINE-LEARNING; OBJECTIVE MEASURE; RULE INTERESTINGNESS; RULE-BASED APPROACH; SUPPORT AND CONFIDENCE; WORK FOCUS;

EID: 77954714436     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1774088.1774306     Document Type: Conference Paper
Times cited : (45)

References (37)
  • 9
    • 84892263752 scopus 로고    scopus 로고
    • Selection of high quality rules in associative classification
    • C. Zhang Y. Zhao and L. Cao, editors, Information Science Reference, Hershey, NY, USA
    • S. Chiusano and P. Garza. Selection of high quality rules in associative classification. In C. Zhang Y. Zhao and L. Cao, editors, Post-Mining of Association RUles: Techniques for Effective Knowledge Extraction. Information Science Reference, Hershey, NY, USA, 2009.
    • (2009) Post-Mining of Association RUles: Techniques for Effective Knowledge Extraction
    • Chiusano, S.1    Garza, P.2
  • 12
    • 33749319347 scopus 로고    scopus 로고
    • Interestingness measures for data mining: A survey
    • L. Geng and H. J. Hamilton. Interestingness measures for data mining: A survey. ACM Comput. Surv., 38(3):9, 2006.
    • (2006) ACM Comput. Surv. , vol.38 , Issue.3 , pp. 9
    • Geng, L.1    Hamilton, H.J.2
  • 13
    • 41549140071 scopus 로고    scopus 로고
    • New probabilistic interest measures for association rules
    • M. Hahsler and K. Hornik. New probabilistic interest measures for association rules. Intell. Data Anal., 11(5):437-455, 2007.
    • (2007) Intell. Data Anal. , vol.11 , Issue.5 , pp. 437-455
    • Hahsler, M.1    Hornik, K.2
  • 17
    • 64749111474 scopus 로고    scopus 로고
    • Comparing machine learning and knowledge discovery in databases: An application to knowledge discovery in texts
    • Springer
    • Y. Kodratoff. Comparing machine learning and knowledge discovery in databases: An application to knowledge discovery in texts. In In: ECCAI summer, pages 1-21. Springer, 2000.
    • (2000) ECCAI Summer , pp. 1-21
    • Kodratoff, Y.1
  • 18
    • 85077432727 scopus 로고
    • On biases in estimating multi-valued attributes
    • Morgan Kaufmann
    • I. Kononenko. On biases in estimating multi-valued attributes. In in Proc. 14th Int. Joint Conf Artificial Intelligence, pages 1034-1040. Morgan Kaufmann, 1995.
    • (1995) Proc. 14th Int. Joint Conf Artificial Intelligence , pp. 1034-1040
    • Kononenko, I.1
  • 19
    • 33846419833 scopus 로고    scopus 로고
    • Association rule interestingness: Measure and statistical validation
    • Springer
    • S. Lallich, O. Teytaud, and E. Prudhomme. Association rule interestingness: Measure and statistical validation. In Quality Measures in Data Mining, pages 251-275. Springer, 2007.
    • (2007) Quality Measures in Data Mining , pp. 251-275
    • Lallich, S.1    Teytaud, O.2    Prudhomme, E.3
  • 22
    • 33846447487 scopus 로고    scopus 로고
    • Association rule interestingness measures: Experimental and theoretical studies
    • Springer
    • P. Lenca, B. Vaillant, P. Meyer, and S. Lallich. Association rule interestingness measures: Experimental and theoretical studies. In Quality Measures in Data Mining, pages 51-76. Springer, 2007.
    • (2007) Quality Measures in Data Mining , pp. 51-76
    • Lenca, P.1    Vaillant, B.2    Meyer, P.3    Lallich, S.4
  • 24
    • 84948104699 scopus 로고    scopus 로고
    • Integrating classification and association rule mining
    • B. Liu, W. Hsu, and Y. Ma. Integrating classification and association rule mining. In KDD, pages 80-86, 1998.
    • (1998) KDD , pp. 80-86
    • Liu, B.1    Hsu, W.2    Ma, Y.3
  • 26
    • 28544452631 scopus 로고    scopus 로고
    • A survey of interestingness measures for knowledge discovery
    • K. McGarry. A survey of interestingness measures for knowledge discovery. Knowl. Eng. Rev., 20(1):39-61, 2005.
    • (2005) Knowl. Eng. Rev. , vol.20 , Issue.1 , pp. 39-61
    • McGarry, K.1
  • 28
    • 26844458786 scopus 로고    scopus 로고
    • Investigation of rule interestingness in medical data mining
    • M. Ohsaki, S. Kitaguchi, H. Yokoi, and T. Yamaguchi. Investigation of rule interestingness in medical data mining. In Active Mining, pages 174-189, 2003.
    • (2003) Active Mining , pp. 174-189
    • Ohsaki, M.1    Kitaguchi, S.2    Yokoi, H.3    Yamaguchi, T.4
  • 29
    • 0002877253 scopus 로고
    • Discovery, analysis, and presentation of strong rules
    • G. Piatetsky-Shapiro and W.J. Frawley, editors, AAAI/MIT Press, Cambridge, MA
    • G. Piatetsky-Shapiro. Discovery, analysis, and presentation of strong rules. In G. Piatetsky-Shapiro and W.J. Frawley, editors, Knowledge Discovery in Databases. AAAI/MIT Press, Cambridge, MA, 1991.
    • (1991) Knowledge Discovery in Databases
    • Piatetsky-Shapiro, G.1
  • 30
    • 2442597364 scopus 로고    scopus 로고
    • Discovering interesting knowledge from a science and technology database with a genetic algorithm
    • W. Romão, A. Freitas, and I. Gimenes. Discovering interesting knowledge from a science and technology database with a genetic algorithm. Appl. Soft Comput., 4(2):121-137, 2004.
    • (2004) Appl. Soft Comput. , vol.4 , Issue.2 , pp. 121-137
    • Romão, W.1    Freitas, A.2    Gimenes, I.3
  • 33
    • 1242308945 scopus 로고    scopus 로고
    • Selecting the right objective measure for association analysis
    • P .Tan, V. Kumar, and J. Srivastava. Selecting the right objective measure for association analysis. Inf. Syst., 29(4):293-313, 2004.
    • (2004) Inf. Syst. , vol.29 , Issue.4 , pp. 293-313
    • Tan, P.1    Kumar, V.2    Srivastava, J.3
  • 34
    • 49749113225 scopus 로고    scopus 로고
    • Using significant positively associated and relatively class correlated rules for associative classification of imbalanced datasets
    • Los Alamitos, IEEE Computer Society Press
    • F. Verhein and S. Chawla. Using significant positively associated and relatively class correlated rules for associative classification of imbalanced datasets. In Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM '07), pages 679Ucombining double acute accent-684, Los Alamitos, 2007. IEEE Computer Society Press.
    • (2007) Proceedings of the Seventh IEEE International Conference on Data Mining (ICDM '07)
    • Verhein, F.1    Chawla, S.2
  • 35
    • 0034800371 scopus 로고    scopus 로고
    • Principal component analysis for clustering gene expression data
    • K.Y. Yeung and W.L. Ruzzo. Principal component analysis for clustering gene expression data. Bioinformatics, 17(9):763-774, 2001. (Pubitemid 32970476)
    • (2001) Bioinformatics , vol.17 , Issue.9 , pp. 763-774
    • Yeung, K.Y.1    Ruzzo, W.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.