메뉴 건너뛰기




Volumn 5, Issue 11, 2010, Pages 1254-1259

Ranking water quality variables using feature selection algorithms to improve generalization capability of artificial neural networks

Author keywords

Artificial neural networks; Melen river; Ranking; Water quality

Indexed keywords


EID: 77954404500     PISSN: None     EISSN: 19922248     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (4)

References (27)
  • 1
    • 33750474052 scopus 로고    scopus 로고
    • Treatment of multi-dimensional data to enhance neural network estimators in regression problem
    • Altun H, Bilgil A, Fidan BC (2007). Treatment of multi-dimensional data to enhance neural network estimators in regression problem, Expert Syst. Appl. 32(2): 599-605.
    • (2007) Expert Syst. Appl , vol.32 , Issue.2 , pp. 599-605
    • Altun, H.1    Bilgil, A.2    Fidan, B.C.3
  • 2
    • 33947626066 scopus 로고    scopus 로고
    • Treatment of skewed multidimensional training data to facilitate the task of engineering neural models
    • Altun H, Bilgil A, Fidan BC (2007). Treatment of skewed multidimensional training data to facilitate the task of engineering neural models, Expert Systems with Applications 33(4): 978-983.
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 978-983
    • Altun, H.1    Bilgil, A.2    Fidan, B.C.3
  • 3
    • 60249092335 scopus 로고    scopus 로고
    • Boosting Selection of Speech Related Features to Improve Performance of Multi-class SVMs in Emotion Detection
    • Altun H, Polat G (2007). Boosting Selection of Speech Related Features to Improve Performance of Multi-class SVMs in Emotion Detection, Expert Syst. Appl. 36(1): 8197-8203.
    • (2007) Expert Syst. Appl , vol.36 , Issue.1 , pp. 8197-8203
    • Altun, H.1    Polat, G.2
  • 5
    • 18144452325 scopus 로고    scopus 로고
    • A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers
    • Cox BA (2003). A review of currently available in-stream water-quality models and their applicability for simulating dissolved oxygen in lowland rivers. Sci. Total Environ. pp. 314-316, 335-377.
    • (2003) Sci. Total Environ
    • Cox, B.A.1
  • 6
    • 0029414330 scopus 로고
    • Application of neural networks in strafed flow stability analysis
    • Grubert JP (1995). Application of neural networks in strafed flow stability analysis. J. Hydraulic Eng. 12: 523-532.
    • (1995) J. Hydraulic Eng , vol.12 , pp. 523-532
    • Grubert, J.P.1
  • 8
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • Guyon I, Elisseeff A (2003). An introduction to variable and feature selection. J. Mach. Learn. Res. 3: 1157-1182.
    • (2003) J. Mach. Learn. Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 9
    • 33847638482 scopus 로고    scopus 로고
    • Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River
    • Kannel PR, Lee S, Lee YS, Kanel SR, Pelletier GJ (2007). Application of automated QUAL2Kw for water quality modeling and management in the Bagmati River, Nepal Ecologigal Modelling pp. 503-517.
    • (2007) Nepal Ecologigal Modelling , pp. 503-517
    • Kannel, P.R.1    Lee, S.2    Lee, Y.S.3    Kanel, S.R.4    Pelletier, G.J.5
  • 10
    • 0034735692 scopus 로고    scopus 로고
    • Case studies on the use of neural networks in eutrophication modeling
    • Karul C, Soyupak S, Çilesiz AF, Akbay N, ve Germen E (2000). Case studies on the use of neural networks in eutrophication modeling, Ecol. Mod. 134: 145-153.
    • (2000) Ecol. Mod , vol.134 , pp. 145-153
    • Karul, C.1    Soyupak, S.2    Çilesiz, A.F.3    Akbay, N.4    Ve Germen, E.5
  • 12
    • 77954389008 scopus 로고    scopus 로고
    • Artifical neural networks as subsymbolic process descriptors, Belkama, Rotterdam, The Netherlands. neural network approach for modelling and prediction of algal blooms
    • Minns AW (1998). Artifical neural networks as subsymbolic process descriptors, Belkama, Rotterdam, The Netherlands. neural network approach for modelling and prediction of algal blooms, Ecol. Mod. pp. 96: 11-28.
    • (1998) Ecol. Mod , vol.96 , pp. 11-28
    • Minns, A.W.1
  • 13
    • 0036611003 scopus 로고    scopus 로고
    • Prediction of sediment load concentration in rivers using artificial neural network model
    • Nagy HM, Watanabe K, Hirano M (2002). Prediction of sediment load concentration in rivers using artificial neural network model, J. Hydraulic. Eng. 128: 588-595.
    • (2002) J. Hydraulic. Eng , vol.128 , pp. 588-595
    • Nagy, H.M.1    Watanabe, K.2    Hirano, M.3
  • 17
    • 0029662837 scopus 로고    scopus 로고
    • Artificial neural networks as empirical models for estimating phytoplankton production
    • Scardi M (1996). Artificial neural networks as empirical models for estimating phytoplankton production, Mar. Ecol. Ser. pp. 139: 289-299.
    • (1996) Mar. Ecol. Ser , vol.139 , pp. 289-299
    • Scardi, M.1
  • 18
    • 33749656875 scopus 로고    scopus 로고
    • Dissolved Oxygen Estimation Using Artificial Neural Network For Water Quality Control
    • Sengorur B, Dogan E, Koklu R, Samandar A (2006). Dissolved Oxygen Estimation Using Artificial Neural Network For Water Quality Control, Fresenius Environ. Bull. pp. 15: 1064-1067.
    • (2006) Fresenius Environ. Bull , vol.15 , pp. 1064-1067
    • Sengorur, B.1    Dogan, E.2    Koklu, R.3    Samandar, A.4
  • 20
    • 77954405279 scopus 로고    scopus 로고
    • Water Transfer As One of the Most Important Ways to Eliminate Water Resources Deficits and to Solve Water Management Problems
    • Paris, April
    • Shiklomanov IA (1999). Water Transfer As One of the Most Important Ways to Eliminate Water Resources Deficits and to Solve Water Management Problems, Proceedings of the International Interbasin Water Transfers Workshop, Paris, April, pp. 203-208.
    • (1999) Proceedings of the International Interbasin Water Transfers Workshop , pp. 203-208
    • Shiklomanov, I.A.1
  • 22
    • 3542995160 scopus 로고    scopus 로고
    • Fuzzy logic model to estimate pseudo steady state chlorophyll-a concentrations in reservoirs
    • Soyupak S, ve Chen DG (2004). Fuzzy logic model to estimate pseudo steady state chlorophyll-a concentrations in reservoirs, Environ. Mod. Ass. 9(1): 51-59.
    • (2004) Environ. Mod. Ass , vol.9 , Issue.1 , pp. 51-59
    • Soyupak, S.1    Ve Chen, D.G.2
  • 23
  • 24
    • 77954387816 scopus 로고    scopus 로고
    • Water quality in melen river and its brunches
    • (in Turkish)
    • Sümer B, Ileri R, Şamandar A, Şengörür B (2001), Water Quality in Melen River and Its Brunches, J. Ecol. Environ. (in Turkish) 10(39): 13-18.
    • (2001) J. Ecol. Environ , vol.10 , Issue.39 , pp. 13-18
    • Sümer, B.1    Ileri, R.2    Şamandar, A.3    Şengörür, B.4
  • 25
    • 77954403446 scopus 로고    scopus 로고
    • Short term forecasting of algal blooms in drinking water reservoirs using artificial neural networks
    • A PhD Thesis submitted to School of Earth and Environmental Sciences, The University of Adelaide, Australia
    • Wilson HEC (2004). Short term forecasting of algal blooms in drinking water reservoirs using artificial neural networks, A PhD Thesis submitted to School of Earth and Environmental Sciences, The University of Adelaide, Australia.
    • (2004)
    • Wilson, H.E.C.1
  • 26
    • 0030725850 scopus 로고    scopus 로고
    • Novel application of a back-propagation artificial neural network model formulated to predict algal bloom
    • Yabunaka K, Hosomi M, ve Murakami A (1997). Novel application of a back-propagation artificial neural network model formulated to predict algal bloom, Wat. Res, pp. 36: 89-97.
    • (1997) Wat. Res , vol.36 , pp. 89-97
    • Yabunaka, K.1    Hosomi, M.2    Ve Murakami, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.