메뉴 건너뛰기




Volumn 36, Issue 4, 2009, Pages 8197-8203

Boosting selection of speech related features to improve performance of multi-class SVMs in emotion detection

Author keywords

Emotion detection; Feature selection; Machine learning; Speech analysis

Indexed keywords

CLASSIFIERS; EXTRACTION; ROBOT LEARNING; SPEECH ANALYSIS; SUPPORT VECTOR MACHINES;

EID: 60249092335     PISSN: 09574174     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.eswa.2008.10.005     Document Type: Article
Times cited : (55)

References (30)
  • 1
    • 33244485264 scopus 로고    scopus 로고
    • Non-parametric classifier-independent feature selection
    • Abe N., and Kudo M. Non-parametric classifier-independent feature selection. Pattern Recognition 39 (2006) 737-746
    • (2006) Pattern Recognition , vol.39 , pp. 737-746
    • Abe, N.1    Kudo, M.2
  • 2
    • 49949085938 scopus 로고    scopus 로고
    • New Frameworks to boost feature selection algorithms in emotion detection for improved human-computer interaction, brain vision and artificial intelligent
    • Lecturer notes in computer science, Berlin, Heidelberg: Springer-Verlag
    • Altun, H., & Polat, G. (2007). New Frameworks to boost feature selection algorithms in emotion detection for improved human-computer interaction, brain vision and artificial intelligent. In Lecturer notes in computer science, LNCS (Vol. 4729, pp. 533-541). Berlin, Heidelberg: Springer-Verlag.
    • (2007) LNCS , vol.4729 , pp. 533-541
    • Altun, H.1    Polat, G.2
  • 8
    • 33745214017 scopus 로고    scopus 로고
    • Fernandez, R., & Picard, R. W. (2005). Classical and novel discriminant features for affect recognition from speech. In Interspeech 2005, Eurospeech 9th European Conference on Speech Communication and Technology (pp. 473-476).
    • Fernandez, R., & Picard, R. W. (2005). Classical and novel discriminant features for affect recognition from speech. In Interspeech 2005, Eurospeech 9th European Conference on Speech Communication and Technology (pp. 473-476).
  • 11
    • 0031078007 scopus 로고    scopus 로고
    • Feature selection: Evaluation application and small sample performance
    • Jain A., and Zongker D. Feature selection: Evaluation application and small sample performance. IEEE Transactions on PAMI 19 2 (1997) 153-158
    • (1997) IEEE Transactions on PAMI , vol.19 , Issue.2 , pp. 153-158
    • Jain, A.1    Zongker, D.2
  • 12
    • 27944504590 scopus 로고    scopus 로고
    • Juslin P.N., and Scherer K.R. (Eds), Oxford University Press, Oxford, UK
    • In: Juslin P.N., and Scherer K.R. (Eds). The new handbook of methods in nonverbal behavior research (2005), Oxford University Press, Oxford, UK
    • (2005) The new handbook of methods in nonverbal behavior research
  • 17
    • 84890445089 scopus 로고    scopus 로고
    • Overfitting in making comparisons between variable selection methods
    • Reunanen J. Overfitting in making comparisons between variable selection methods. Journal of Machine Learning Research 3 (2003) 1371-1382
    • (2003) Journal of Machine Learning Research , vol.3 , pp. 1371-1382
    • Reunanen, J.1
  • 19
    • 78149472083 scopus 로고    scopus 로고
    • Emotion recognition in the noise applying large acoustic feature sets
    • Dresden
    • Schuller B., Arsic D., Wallhoff F., and Rigoll G. Emotion recognition in the noise applying large acoustic feature sets. Speech Prosody (2006) Dresden
    • (2006) Speech Prosody
    • Schuller, B.1    Arsic, D.2    Wallhoff, F.3    Rigoll, G.4
  • 20
    • 33947164164 scopus 로고    scopus 로고
    • An evaluation of the robustness of existing supervised machine learning approaches to the classification of emotions in speech
    • Shami M., and Verhelst W. An evaluation of the robustness of existing supervised machine learning approaches to the classification of emotions in speech. Speech Communication 49 (2007) 201-212
    • (2007) Speech Communication , vol.49 , pp. 201-212
    • Shami, M.1    Verhelst, W.2
  • 22
    • 84979947871 scopus 로고    scopus 로고
    • Ververidis, D., & Kotropoulos, D. (2004). Automatic speech classification to five emotional states based on gender information. In Proceedings 12th European signal processing conference (EUSIPCO) (pp. 341-344).
    • Ververidis, D., & Kotropoulos, D. (2004). Automatic speech classification to five emotional states based on gender information. In Proceedings 12th European signal processing conference (EUSIPCO) (pp. 341-344).
  • 23
    • 33750552511 scopus 로고    scopus 로고
    • Emotional speech classification using Gaussian mixture models and the sequential floating forward selection algorithm
    • Ververidis, D., & Kotropoulos, D. (2005). Emotional speech classification using Gaussian mixture models and the sequential floating forward selection algorithm. In IEEE international conference on multimedia and expo (ICME) (pp. 1500-1503).
    • (2005) IEEE international conference on multimedia and expo (ICME) , pp. 1500-1503
    • Ververidis, D.1    Kotropoulos, D.2
  • 26
    • 60249084796 scopus 로고    scopus 로고
    • Weston, J., Elisseeff, A., Baki{dotless}r, G., & Sinz, F. (2006). The spider software package. .
    • Weston, J., Elisseeff, A., Baki{dotless}r, G., & Sinz, F. (2006). The spider software package. .
  • 30
    • 17444368679 scopus 로고    scopus 로고
    • LS bound based gene selection for DNA microarray data
    • Zhou X., and Mao K.Z. LS bound based gene selection for DNA microarray data. Bioinformatics 21 8 (2005) 1559-1564
    • (2005) Bioinformatics , vol.21 , Issue.8 , pp. 1559-1564
    • Zhou, X.1    Mao, K.Z.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.