메뉴 건너뛰기




Volumn 225, Issue 1, 2010, Pages 319-348

Centre of an algebra

Author keywords

Commutative algebras in braided monoidal categories.; Module categories; Monoidal categories

Indexed keywords


EID: 77954314024     PISSN: 00018708     EISSN: 10902082     Source Type: Journal    
DOI: 10.1016/j.aim.2010.02.018     Document Type: Article
Times cited : (55)

References (16)
  • 2
    • 0035483232 scopus 로고    scopus 로고
    • Galois algebras and monoidal functors between categories of representation of finite groups
    • Davydov A. Galois algebras and monoidal functors between categories of representation of finite groups. J. Algebra 2001, 244(1).
    • (2001) J. Algebra , vol.244 , Issue.1
    • Davydov, A.1
  • 3
    • 74249121671 scopus 로고    scopus 로고
    • Modular invariants for group-theoretic modular data
    • Davydov A. Modular invariants for group-theoretic modular data. J. Algebra 2010, 323:1321-1348. http://arxiv.org/abs/0908.1044.
    • (2010) J. Algebra , vol.323 , pp. 1321-1348
    • Davydov, A.1
  • 6
    • 43949173985 scopus 로고
    • Braided tensor categories
    • Joyal A., Street R. Braided tensor categories. Adv. Math. 1993, 102(1):20-78.
    • (1993) Adv. Math. , vol.102 , Issue.1 , pp. 20-78
    • Joyal, A.1    Street, R.2
  • 7
    • 52049124021 scopus 로고    scopus 로고
    • Morita classes of algebras in modular tensor categories
    • Kong L., Runkel I. Morita classes of algebras in modular tensor categories. Adv. Math. 2008, 219:1548-1576.
    • (2008) Adv. Math. , vol.219 , pp. 1548-1576
    • Kong, L.1    Runkel, I.2
  • 9
    • 0010798477 scopus 로고
    • Polynomial equations for rational conformal field theories
    • Moore G., Seiberg N. Polynomial equations for rational conformal field theories. Phys. Lett. B 1988, 212(4):451-460.
    • (1988) Phys. Lett. B , vol.212 , Issue.4 , pp. 451-460
    • Moore, G.1    Seiberg, N.2
  • 10
    • 0037400855 scopus 로고    scopus 로고
    • From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors
    • Müger M. From subfactors to categories and topology. II. The quantum double of tensor categories and subfactors. J. Pure Appl. Algebra 2003, 180(1-2):159-219.
    • (2003) J. Pure Appl. Algebra , vol.180 , Issue.1-2 , pp. 159-219
    • Müger, M.1
  • 11
    • 0038309312 scopus 로고    scopus 로고
    • Module categories, weak Hopf algebras and modular invariants
    • Ostrik V. Module categories, weak Hopf algebras and modular invariants. Transform. Groups 2003, 8(2):177-206.
    • (2003) Transform. Groups , vol.8 , Issue.2 , pp. 177-206
    • Ostrik, V.1
  • 12
    • 0038457662 scopus 로고    scopus 로고
    • Module categories over the Drinfeld double of a finite group
    • Ostrik V. Module categories over the Drinfeld double of a finite group. Int. Math. Res. Not. 2003, 27:1507-1520.
    • (2003) Int. Math. Res. Not. , vol.27 , pp. 1507-1520
    • Ostrik, V.1
  • 13
    • 0000790004 scopus 로고
    • High algebraic K-theory I
    • Springer-Verlag
    • Quillen D. High algebraic K-theory I. Lecture Notes in Mathematics 1973, vol. 341:85-147. Springer-Verlag.
    • (1973) Lecture Notes in Mathematics , vol.341 , pp. 85-147
    • Quillen, D.1
  • 14
    • 77954313429 scopus 로고
    • Tortile tensor categories, Ph.D. thesis, Macquarie University,
    • M. Shum, Tortile tensor categories, Ph.D. thesis, Macquarie University, 1989.
    • (1989)
    • Shum, M.1
  • 15
    • 0003252570 scopus 로고
    • Quantum invariants of knots and 3-manifolds
    • Walter de Gruyter, Berlin
    • Turaev V. Quantum invariants of knots and 3-manifolds. De Gruyter Studies in Mathematics 1994, vol. 18:588. Walter de Gruyter, Berlin.
    • (1994) De Gruyter Studies in Mathematics , vol.18 , pp. 588
    • Turaev, V.1
  • 16
    • 0002116156 scopus 로고    scopus 로고
    • The Brauer group of a braided monoidal category
    • Van Oystaeyen F., Zhang Y.H. The Brauer group of a braided monoidal category. J. Algebra 1998, 202:96-128.
    • (1998) J. Algebra , vol.202 , pp. 96-128
    • Van Oystaeyen, F.1    Zhang, Y.H.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.