-
1
-
-
0001573594
-
Regression, prediction and shrinkage
-
Copas JB. Regression, prediction and shrinkage. J. R. Stat. Soc B 1983, 45:311-354.
-
(1983)
J. R. Stat. Soc B
, vol.45
, pp. 311-354
-
-
Copas, J.B.1
-
3
-
-
84952499789
-
Frequency of selecting noise variables in subset regression analysis: a simulation study
-
Flack VF, Chang PC. Frequency of selecting noise variables in subset regression analysis: a simulation study. Am. Stat. 1987, 41:84-86.
-
(1987)
Am. Stat.
, vol.41
, pp. 84-86
-
-
Flack, V.F.1
Chang, P.C.2
-
4
-
-
77952568988
-
Penalized estimation in the Cox proportional hazards model
-
Goeman JJ. Penalized estimation in the Cox proportional hazards model. Biometrical J. 2010, 52:70-84.
-
(2010)
Biometrical J.
, vol.52
, pp. 70-84
-
-
Goeman, J.J.1
-
6
-
-
84942484786
-
Ridge regression: biased estimation for nonorthogonal problems
-
Hoerl AE, Kennard R. Ridge regression: biased estimation for nonorthogonal problems. Technometrics 1970, 12:55-67.
-
(1970)
Technometrics
, vol.12
, pp. 55-67
-
-
Hoerl, A.E.1
Kennard, R.2
-
7
-
-
0001159321
-
The impact of model selection on inference in linear regression
-
Hurvich CM, Tsai C-L. The impact of model selection on inference in linear regression. Am. Stat. 1990, 44:214-217.
-
(1990)
Am. Stat.
, vol.44
, pp. 214-217
-
-
Hurvich, C.M.1
Tsai, C.-.L.2
-
8
-
-
58749113262
-
Stepwise model fitting and statistical inference: turning noise into signal pollution
-
Mundry R, Nunn CL. Stepwise model fitting and statistical inference: turning noise into signal pollution. Am. Nat. 2009, 173:119-123.
-
(2009)
Am. Nat.
, vol.173
, pp. 119-123
-
-
Mundry, R.1
Nunn, C.L.2
-
9
-
-
70349102828
-
Performance of several variable-selection methods applied to real ecological data
-
Murtaugh PA. Performance of several variable-selection methods applied to real ecological data. Ecol. Lett. 2009, 12:1061-1068.
-
(2009)
Ecol. Lett.
, vol.12
, pp. 1061-1068
-
-
Murtaugh, P.A.1
-
10
-
-
69249230467
-
A review of Bayesian variable selection methods: what, how and which
-
O'Hara RB, Sillanpää MJ. A review of Bayesian variable selection methods: what, how and which. Bayesian Anal. 2009, 4:85-118.
-
(2009)
Bayesian Anal.
, vol.4
, pp. 85-118
-
-
O'Hara, R.B.1
Sillanpää, M.J.2
-
11
-
-
70149113077
-
-
Available at:, R Foundation for Statistical Computing, Vienna
-
R: A Language and Environment for Statistical Computing 2009, http://www.R-project.org, Available at:, R Foundation for Statistical Computing, Vienna
-
(2009)
R: A Language and Environment for Statistical Computing
-
-
-
12
-
-
34447116287
-
The lasso - a novel method for predictive covariate model building in nonlinear mixed effects models
-
Ribbing J, Nyberg J, Caster O, Jonsson EJ. The lasso - a novel method for predictive covariate model building in nonlinear mixed effects models. J. Pharmacokinet Pharmacodyn. 2007, 34:485-517.
-
(2007)
J. Pharmacokinet Pharmacodyn.
, vol.34
, pp. 485-517
-
-
Ribbing, J.1
Nyberg, J.2
Caster, O.3
Jonsson, E.J.4
-
13
-
-
38849176100
-
Selection of important variables and determination of functional form for continuous predictors in multivariate model building
-
Sauerbrei W, Royston P, Binder H. Selection of important variables and determination of functional form for continuous predictors in multivariate model building. Stat. Med. 2007, 26:5512-5528.
-
(2007)
Stat. Med.
, vol.26
, pp. 5512-5528
-
-
Sauerbrei, W.1
Royston, P.2
Binder, H.3
-
14
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani R. Regression shrinkage and selection via the lasso. J. R. Stat. Soc. B 1996, 58:267-288.
-
(1996)
J. R. Stat. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
15
-
-
66849143711
-
Covariance-regularized regression and classification for high dimensional problems
-
Witten DM, Tibshirani R. Covariance-regularized regression and classification for high dimensional problems. J. R. Stat. Soc. B 2009, 71:615-636.
-
(2009)
J. R. Stat. Soc. B
, vol.71
, pp. 615-636
-
-
Witten, D.M.1
Tibshirani, R.2
|