메뉴 건너뛰기




Volumn 360, Issue 1-2, 2010, Pages 389-396

Phenomenological analysis of transport of mono- and divalent ions in nanofiltration

Author keywords

Ion exclusion mechanism; Modeling; Mono and divalent ions; Nanofiltration; Phenomenological transport coefficients; Salt partitioning

Indexed keywords

ION EXCLUSION; MECHANISM MODELING; MONO- AND DIVALENT ION; MONO- AND DIVALENT IONS; PHENOMENOLOGICAL TRANSPORT COEFFICIENTS; TRANSPORT COEFFICIENT;

EID: 77954214245     PISSN: 03767388     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.memsci.2010.05.037     Document Type: Article
Times cited : (61)

References (59)
  • 1
    • 0035437854 scopus 로고    scopus 로고
    • Flux decline during nanofiltration of organic components in aqueous solution
    • Van der Bruggen B., Vandecasteele C. Flux decline during nanofiltration of organic components in aqueous solution. Environ. Sci. Technol. 2001, 35:3535.
    • (2001) Environ. Sci. Technol. , vol.35 , pp. 3535
    • Van der Bruggen, B.1    Vandecasteele, C.2
  • 4
    • 0029663571 scopus 로고    scopus 로고
    • Utilization of the donnan effect for improving electrolyte separation with nanofiltration membranes
    • Levenstein R., Hasson D., Semiat R. Utilization of the donnan effect for improving electrolyte separation with nanofiltration membranes. J. Membr. Sci. 1996, 116:77.
    • (1996) J. Membr. Sci. , vol.116 , pp. 77
    • Levenstein, R.1    Hasson, D.2    Semiat, R.3
  • 5
    • 0037454217 scopus 로고    scopus 로고
    • Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes
    • Szymczyk A., Labbez C., Fievet P., Vidonne A., Foissy A., Pagetti J. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes. Adv. Colloid Interface Sci. 2003, 103:77.
    • (2003) Adv. Colloid Interface Sci. , vol.103 , pp. 77
    • Szymczyk, A.1    Labbez, C.2    Fievet, P.3    Vidonne, A.4    Foissy, A.5    Pagetti, J.6
  • 6
    • 0342378159 scopus 로고    scopus 로고
    • The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes
    • Wang X.L., Tsuru T., Nakao S., Kimura S. The electrostatic and steric-hindrance model for the transport of charged solutes through nanofiltration membranes. J. Membr. Sci. 1997, 135:19.
    • (1997) J. Membr. Sci. , vol.135 , pp. 19
    • Wang, X.L.1    Tsuru, T.2    Nakao, S.3    Kimura, S.4
  • 7
    • 0034669809 scopus 로고    scopus 로고
    • 4 across an amphoteric nanofiltration membrane
    • 4 across an amphoteric nanofiltration membrane. J. Membr. Sci. 2000, 179:137.
    • (2000) J. Membr. Sci. , vol.179 , pp. 137
    • Afonso, M.D.1    de Pinho, M.N.2
  • 8
    • 0032552533 scopus 로고    scopus 로고
    • Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values
    • Hagmeyer G., Gimbel R. Modelling the salt rejection of nanofiltration membranes for ternary ion mixtures and for single salts at different pH values. Desalination 1998, 117:247.
    • (1998) Desalination , vol.117 , pp. 247
    • Hagmeyer, G.1    Gimbel, R.2
  • 9
    • 8344274266 scopus 로고    scopus 로고
    • Nanofiltration theory: an analytic approach for single salts
    • Lefebvre X., Palmeri J., David P. Nanofiltration theory: an analytic approach for single salts. J. Phys. Chem. B 2004, 108:16811.
    • (2004) J. Phys. Chem. B , vol.108 , pp. 16811
    • Lefebvre, X.1    Palmeri, J.2    David, P.3
  • 11
  • 12
    • 17144394111 scopus 로고    scopus 로고
    • Nanofiltration theory: good co-ion exclusion approximation for single salts
    • Lefebvre X., Palmeri J. Nanofiltration theory: good co-ion exclusion approximation for single salts. J. Phys. Chem. B 2005, 109:5525.
    • (2005) J. Phys. Chem. B , vol.109 , pp. 5525
    • Lefebvre, X.1    Palmeri, J.2
  • 13
    • 49949148425 scopus 로고
    • Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes
    • Spiegler K.S., Kedem O. Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes. Desalination 1966, 1:311.
    • (1966) Desalination , vol.1 , pp. 311
    • Spiegler, K.S.1    Kedem, O.2
  • 14
    • 0346525297 scopus 로고
    • Pressure-drop due to motion of a sphere near wall bounding a Poiseuille flow
    • Bungay P.M., Brenner H. Pressure-drop due to motion of a sphere near wall bounding a Poiseuille flow. J. Fluid Mech. 1973, 60:81.
    • (1973) J. Fluid Mech. , vol.60 , pp. 81
    • Bungay, P.M.1    Brenner, H.2
  • 15
    • 0023422845 scopus 로고
    • Hindered transport of large molecules in liquid-filled pores
    • Deen W.M. Hindered transport of large molecules in liquid-filled pores. AIChE J. 1987, 33:1409.
    • (1987) AIChE J. , vol.33 , pp. 1409
    • Deen, W.M.1
  • 16
    • 0043068216 scopus 로고    scopus 로고
    • Nanofiltration modeling: the role of dielectric exclusion in membrane characterization
    • Bandini S., Vezzani D. Nanofiltration modeling: the role of dielectric exclusion in membrane characterization. Chem. Eng. Sci. 2003, 58:3303.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 3303
    • Bandini, S.1    Vezzani, D.2
  • 17
    • 0036530850 scopus 로고    scopus 로고
    • Modelling the performance of membrane nanofiltration-critical assessment and model development
    • Bowen W.R., Welfoot J.S. Modelling the performance of membrane nanofiltration-critical assessment and model development. Chem. Eng. Sci. 2002, 57:1121.
    • (2002) Chem. Eng. Sci. , vol.57 , pp. 1121
    • Bowen, W.R.1    Welfoot, J.S.2
  • 19
    • 0034737284 scopus 로고    scopus 로고
    • Dielectric exclusion of ions from membranes
    • Yaroshchuk A.E. Dielectric exclusion of ions from membranes. Adv. Colloid Interface Sci. 2000, 85:193.
    • (2000) Adv. Colloid Interface Sci. , vol.85 , pp. 193
    • Yaroshchuk, A.E.1
  • 20
    • 0032938868 scopus 로고    scopus 로고
    • Investigation of the solute separation by charged nanofiltration membrane: Effect of pH, ionic strength and solute type
    • Xu Y., Lebrun R.E. Investigation of the solute separation by charged nanofiltration membrane: Effect of pH, ionic strength and solute type. J. Membr. Sci. 1999, 158:93.
    • (1999) J. Membr. Sci. , vol.158 , pp. 93
    • Xu, Y.1    Lebrun, R.E.2
  • 21
    • 0038356682 scopus 로고    scopus 로고
    • Characteristics of thin-film nanofiltration membranes at various pH-values
    • Szoke S., Patzay G., Weiser L. Characteristics of thin-film nanofiltration membranes at various pH-values. Desalination 2003, 151:123.
    • (2003) Desalination , vol.151 , pp. 123
    • Szoke, S.1    Patzay, G.2    Weiser, L.3
  • 22
    • 0037056538 scopus 로고    scopus 로고
    • Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions
    • Wang X.L., Wang W.N., Wang D.X. Experimental investigation on separation performance of nanofiltration membranes for inorganic electrolyte solutions. Desalination 2002, 145:115.
    • (2002) Desalination , vol.145 , pp. 115
    • Wang, X.L.1    Wang, W.N.2    Wang, D.X.3
  • 23
    • 1242270474 scopus 로고    scopus 로고
    • Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition
    • Paugam L., Taha S., Dorange G., Jaouen P., Qu m neur F. Mechanism of nitrate ions transfer in nanofiltration depending on pressure, pH, concentration and medium composition. J. Membr. Sci. 2004, 231:37.
    • (2004) J. Membr. Sci. , vol.231 , pp. 37
    • Paugam, L.1    Taha, S.2    Dorange, G.3    Jaouen, P.4    Qu m neur, F.5
  • 24
    • 27944449222 scopus 로고    scopus 로고
    • Modelling the amphoteric behaviour of polyamide nanofiltration membranes
    • Bandini S., Mazzoni C. Modelling the amphoteric behaviour of polyamide nanofiltration membranes. Desalination 2005, 184:327.
    • (2005) Desalination , vol.184 , pp. 327
    • Bandini, S.1    Mazzoni, C.2
  • 25
    • 0030590547 scopus 로고    scopus 로고
    • Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes
    • Childress A.E., Elimelech M. Effect of solution chemistry on the surface charge of polymeric reverse osmosis and nanofiltration membranes. J. Membr. Sci. 1996, 119:253.
    • (1996) J. Membr. Sci. , vol.119 , pp. 253
    • Childress, A.E.1    Elimelech, M.2
  • 27
    • 0036131838 scopus 로고    scopus 로고
    • Effect of solution physico-chemistry on the charge property of nanofiltration membranes
    • Tay J.H., Liu J., Delai Sun D. Effect of solution physico-chemistry on the charge property of nanofiltration membranes. Water Res. 2002, 36:585.
    • (2002) Water Res. , vol.36 , pp. 585
    • Tay, J.H.1    Liu, J.2    Delai Sun, D.3
  • 28
    • 26244444773 scopus 로고    scopus 로고
    • The role of membrane charge on nanofiltration performance
    • Teixeira M.R., Rosa M.J., Nyström M. The role of membrane charge on nanofiltration performance. J. Membr. Sci. 2005, 265:160.
    • (2005) J. Membr. Sci. , vol.265 , pp. 160
    • Teixeira, M.R.1    Rosa, M.J.2    Nyström, M.3
  • 29
    • 33745714107 scopus 로고    scopus 로고
    • Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH
    • Mänttäri M., Pihlajamäki A., Nyström M. Effect of pH on hydrophilicity and charge and their effect on the filtration efficiency of NF membranes at different pH. J. Membr. Sci. 2006, 280:311.
    • (2006) J. Membr. Sci. , vol.280 , pp. 311
    • Mänttäri, M.1    Pihlajamäki, A.2    Nyström, M.3
  • 30
    • 0036117790 scopus 로고    scopus 로고
    • Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole
    • Hughes M., Chen G.Z., Shaffer M.S.P., Fray D.J, Windle A.H. Electrochemical capacitance of a nanoporous composite of carbon nanotubes and polypyrrole. Chem. Mater. 2002, 14:1610.
    • (2002) Chem. Mater. , vol.14 , pp. 1610
    • Hughes, M.1    Chen, G.Z.2    Shaffer, M.S.P.3    Fray, D.J.4    Windle, A.H.5
  • 31
    • 0038581549 scopus 로고    scopus 로고
    • Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization
    • Freger V. Nanoscale heterogeneity of polyamide membranes formed by interfacial polymerization. Langmuir 2003, 19:4791.
    • (2003) Langmuir , vol.19 , pp. 4791
    • Freger, V.1
  • 32
    • 0037414382 scopus 로고    scopus 로고
    • Mathematical model of charge and density distributions in interfacial polymerization of thin films
    • Freger V., Srebnik S. Mathematical model of charge and density distributions in interfacial polymerization of thin films. J. Appl. Polym. Sci. 2003, 88:1162.
    • (2003) J. Appl. Polym. Sci. , vol.88 , pp. 1162
    • Freger, V.1    Srebnik, S.2
  • 33
    • 38649088889 scopus 로고    scopus 로고
    • Determination of concentration-dependent transport coefficients in nanofiltration: defining an optimal set of coefficients
    • Kedem O., Freger V. Determination of concentration-dependent transport coefficients in nanofiltration: defining an optimal set of coefficients. J. Membr. Sci. 2008, 310:586.
    • (2008) J. Membr. Sci. , vol.310 , pp. 586
    • Kedem, O.1    Freger, V.2
  • 34
    • 56649112758 scopus 로고    scopus 로고
    • Determination of concentration-dependent transport coefficients in nanofiltration: experimental evaluation of coefficients
    • Bason S., Kedem O., Freger V. Determination of concentration-dependent transport coefficients in nanofiltration: experimental evaluation of coefficients. J. Membr. Sci. 2009, 326:197.
    • (2009) J. Membr. Sci. , vol.326 , pp. 197
    • Bason, S.1    Kedem, O.2    Freger, V.3
  • 35
    • 0037089730 scopus 로고    scopus 로고
    • Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification
    • Yaroshchuk A.E. Rejection of single salts versus transmembrane volume flow in RO/NF: thermodynamic properties, model of constant coefficients, and its modification. J. Membr. Sci. 2002, 198:285.
    • (2002) J. Membr. Sci. , vol.198 , pp. 285
    • Yaroshchuk, A.E.1
  • 36
    • 77953022775 scopus 로고    scopus 로고
    • Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics
    • Bason S., Kaufman Y., Freger V. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics. J. Phys. Chem. B 2010, 114:3510.
    • (2010) J. Phys. Chem. B , vol.114 , pp. 3510
    • Bason, S.1    Kaufman, Y.2    Freger, V.3
  • 37
    • 77953025326 scopus 로고    scopus 로고
    • Mechanisms of transfer of ionic solutes through composite polymer nano-filtration membranes in view of their high sulfate/chloride selectivities
    • Yaroshchuk A., Martinez-Llado X., Llenas L., Rovira M., de Pablo J., Flores J., Rubio P. Mechanisms of transfer of ionic solutes through composite polymer nano-filtration membranes in view of their high sulfate/chloride selectivities. Desalin. Water Treat. 2009, 6:48.
    • (2009) Desalin. Water Treat. , vol.6 , pp. 48
    • Yaroshchuk, A.1    Martinez-Llado, X.2    Llenas, L.3    Rovira, M.4    de Pablo, J.5    Flores, J.6    Rubio, P.7
  • 38
    • 18444373535 scopus 로고    scopus 로고
    • Measurements of transient membrane potential after current switch-off as a tool to study the electrochemical properties of supported thin nanoporous layers
    • Yaroshchuk A., Karpenko L., Ribitsch V. Measurements of transient membrane potential after current switch-off as a tool to study the electrochemical properties of supported thin nanoporous layers. J. Phys. Chem. B 2005, 109:7834.
    • (2005) J. Phys. Chem. B , vol.109 , pp. 7834
    • Yaroshchuk, A.1    Karpenko, L.2    Ribitsch, V.3
  • 39
    • 48249091182 scopus 로고    scopus 로고
    • Quantification of functional groups and modeling of their ionization behavior in the active layer of ft30 reverse osmosis membrane
    • Coronell O., Mariñas B.J., Zhang X., Cahill D.G. Quantification of functional groups and modeling of their ionization behavior in the active layer of ft30 reverse osmosis membrane. Environ. Sci. Technol. 2008, 42:5260.
    • (2008) Environ. Sci. Technol. , vol.42 , pp. 5260
    • Coronell, O.1    Mariñas, B.J.2    Zhang, X.3    Cahill, D.G.4
  • 40
    • 0035973416 scopus 로고    scopus 로고
    • Evaluating the charge of nanofiltration membranes
    • Schaep J., Vandecasteele C. Evaluating the charge of nanofiltration membranes. J. Membr. Sci. 2001, 188:129.
    • (2001) J. Membr. Sci. , vol.188 , pp. 129
    • Schaep, J.1    Vandecasteele, C.2
  • 41
    • 34548021469 scopus 로고    scopus 로고
    • Characterization of ion transport in thin films using electrochemical impedance spectroscopy ii: Examination of the polyamide layer of ro membranes
    • Bason S., Oren Y., Freger V. Characterization of ion transport in thin films using electrochemical impedance spectroscopy ii: Examination of the polyamide layer of ro membranes. J. Membr. Sci. 2007, 302:10.
    • (2007) J. Membr. Sci. , vol.302 , pp. 10
    • Bason, S.1    Oren, Y.2    Freger, V.3
  • 43
    • 0029657119 scopus 로고    scopus 로고
    • Characterisation and prediction of separation performance of nanofiltration membranes
    • Bowen W.R., Mukhtar H. Characterisation and prediction of separation performance of nanofiltration membranes. J. Membr. Sci. 1996, 112:263.
    • (1996) J. Membr. Sci. , vol.112 , pp. 263
    • Bowen, W.R.1    Mukhtar, H.2
  • 44
    • 0033521481 scopus 로고    scopus 로고
    • Modelling the rejection of nanofiltration membranes using zeta potential measurements
    • Hagmeyer G., Gimbel R. Modelling the rejection of nanofiltration membranes using zeta potential measurements. Sep. Purif. Technol. 1999, 15:19.
    • (1999) Sep. Purif. Technol. , vol.15 , pp. 19
    • Hagmeyer, G.1    Gimbel, R.2
  • 45
    • 77954214476 scopus 로고    scopus 로고
    • http://www.dow.com/.
  • 46
    • 0030615431 scopus 로고    scopus 로고
    • Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy
    • Bowen W.R., Mohammad A.W., Hilal N. Characterisation of nanofiltration membranes for predictive purposes-use of salts, uncharged solutes and atomic force microscopy. J. Membr. Sci. 1997, 126:91.
    • (1997) J. Membr. Sci. , vol.126 , pp. 91
    • Bowen, W.R.1    Mohammad, A.W.2    Hilal, N.3
  • 47
    • 2542419942 scopus 로고    scopus 로고
    • Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study
    • Freger V. Swelling and morphology of the skin layer of polyamide composite membranes: an atomic force microscopy study. Environ. Sci. Technol. 2004, 38:3168.
    • (2004) Environ. Sci. Technol. , vol.38 , pp. 3168
    • Freger, V.1
  • 48
    • 37249045386 scopus 로고    scopus 로고
    • The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes
    • Bruni L., Bandini S. The role of the electrolyte on the mechanism of charge formation in polyamide nanofiltration membranes. J. Membr. Sci. 2008, 308:136.
    • (2008) J. Membr. Sci. , vol.308 , pp. 136
    • Bruni, L.1    Bandini, S.2
  • 49
    • 0042780901 scopus 로고    scopus 로고
    • A new interpretation of the effective born radius from simulation and experiment
    • Babu C.S., Lim C. A new interpretation of the effective born radius from simulation and experiment. Chem. Phys. Lett. 1999, 310:225.
    • (1999) Chem. Phys. Lett. , vol.310 , pp. 225
    • Babu, C.S.1    Lim, C.2
  • 52
    • 39749178267 scopus 로고    scopus 로고
    • The influence of pH, salt and temperature on nanofiltration performance
    • Nilsson M., Tragardh G., Ostergren K. The influence of pH, salt and temperature on nanofiltration performance. J. Membr. Sci. 2008, 312:97.
    • (2008) J. Membr. Sci. , vol.312 , pp. 97
    • Nilsson, M.1    Tragardh, G.2    Ostergren, K.3
  • 53
    • 33745714042 scopus 로고    scopus 로고
    • The influence of sodium chloride on mass transfer in a polyamide nanofiltration membrane at elevated temperatures
    • Nilsson M., Tragardh G., Ostergren K. The influence of sodium chloride on mass transfer in a polyamide nanofiltration membrane at elevated temperatures. J. Membr. Sci. 2006, 280:928.
    • (2006) J. Membr. Sci. , vol.280 , pp. 928
    • Nilsson, M.1    Tragardh, G.2    Ostergren, K.3
  • 54
    • 0034666520 scopus 로고    scopus 로고
    • Separation of concentrated organic/inorganic salt mixtures by nanofiltration
    • Freger V., Arnot T.C., Howell J.A. Separation of concentrated organic/inorganic salt mixtures by nanofiltration. J. Membr. Sci. 2000, 178:185.
    • (2000) J. Membr. Sci. , vol.178 , pp. 185
    • Freger, V.1    Arnot, T.C.2    Howell, J.A.3
  • 55
    • 20444473695 scopus 로고    scopus 로고
    • Nanofiltration of glucose and sodium lactate solutions: variations of retention between single- and mixed-solute solutions
    • Bouchoux A., Balmann H.R.-d., Lutin F. Nanofiltration of glucose and sodium lactate solutions: variations of retention between single- and mixed-solute solutions. J. Membr. Sci. 2005, 258:123.
    • (2005) J. Membr. Sci. , vol.258 , pp. 123
    • Bouchoux, A.1    Balmann, H.R.-D.2    Lutin, F.3
  • 56
    • 77951295826 scopus 로고    scopus 로고
    • On the amphoteric behavior of Desal DK nanofiltration membranes at low salt concentrations
    • Szymczyk A., Fievet P., Bandini S. On the amphoteric behavior of Desal DK nanofiltration membranes at low salt concentrations. J. Membr. Sci. 2010, 355:60.
    • (2010) J. Membr. Sci. , vol.355 , pp. 60
    • Szymczyk, A.1    Fievet, P.2    Bandini, S.3
  • 57
    • 0016946162 scopus 로고
    • The distribution of electrolytes between cellulose acetate membranes and aqueous solutions
    • Glueckauf E. The distribution of electrolytes between cellulose acetate membranes and aqueous solutions. Desalination 1976, 18:155.
    • (1976) Desalination , vol.18 , pp. 155
    • Glueckauf, E.1
  • 58
    • 0343270725 scopus 로고
    • Salt transport in composite reverse-osmosis membranes
    • Dresner L. Salt transport in composite reverse-osmosis membranes. Desalination 1974, 15:371.
    • (1974) Desalination , vol.15 , pp. 371
    • Dresner, L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.