메뉴 건너뛰기




Volumn 224, Issue 4, 2010, Pages 449-461

Exergy analysis of a gas turbine trigeneration system using the Brayton refrigeration cycle for inlet air cooling

Author keywords

Brayton cycle; energy; exergy; gas turbine; inlet air cooling; trigeneration

Indexed keywords

AIR REFRIGERATION; BRAYTON-REFRIGERATION CYCLE; COMPRESSOR INLET; CYCLE PERFORMANCE; ENERGY; ENERGY AND EXERGY EFFICIENCY; ENERGY SAVING; ENERGY UTILIZATION EFFICIENCY; EXERGY ANALYSIS; EXERGY DESTRUCTIONS; EXTRACTION PRESSURE; INLET AIR; INLET-AIR COOLING; KEY PARAMETERS; LOW TEMPERATURES; MASS RATE; NOVEL METHODS; PRIME MOVERS; PROCESS HEAT; RELATIVE HUMIDITIES; SECOND LAW EFFICIENCIES; STEAM GENERATION; THERMAL PERFORMANCE; TRI-GENERATION; TRI-GENERATION PLANTS; TRIGENERATION CYCLE; TRIGENERATION SYSTEMS; TURBINE INLET TEMPERATURE; WORKING FLUID;

EID: 77953947970     PISSN: 09576509     EISSN: None     Source Type: Journal    
DOI: 10.1243/09576509JPE897     Document Type: Article
Times cited : (13)

References (28)
  • 1
    • 29144473334 scopus 로고    scopus 로고
    • Exergy utilization evaluation of CCHP systems
    • Li, H., Fu, L., Geng, K., and Jiang, Y. Exergy utilization evaluation of CCHP systems. Energy Build., 2006, 38, 255-257.
    • (2006) Energy Build. , vol.38 , pp. 255-257
    • Li, H.1    Fu, L.2    Geng, K.3    Jiang, Y.4
  • 2
    • 77953918989 scopus 로고    scopus 로고
    • A methodology for sizing a trigeneration plant in mediterranean areas
    • Cardona, E. and Piacentino, A. A methodology for sizing a trigeneration plant in mediterranean areas. Appl. Therm. Eng., 2004, 24, 941-947.
    • (2004) Appl. Therm. Eng. , vol.24 , pp. 941-947
    • Cardona, E.1    Piacentino, A.2
  • 3
    • 13144295045 scopus 로고    scopus 로고
    • A validation methodology for a combined heating: Cooling and power (CHCP) pilot plant
    • Cardona, E. and Piacentino, A. A validation methodology for a combined heating: cooling and power (CHCP) pilot plant. J. EnergyResour. Technol., 2005, 126, 285-292.
    • (2005) J. EnergyResour. Technol. , vol.126 , pp. 285-292
    • Cardona, E.1    Piacentino, A.2
  • 4
    • 0036525738 scopus 로고    scopus 로고
    • Combinedcoolingheat and power in supermarket
    • Maidment, G. G. andTozer, R. M. Combinedcoolingheat and power in supermarket. Appl. Therm. Eng., 2002, 22, 653-665.
    • (2002) Appl. Therm. Eng. , vol.22 , pp. 653-665
    • Maidment, G.G.1    Tozer, R.M.2
  • 6
    • 0038024667 scopus 로고    scopus 로고
    • Thermodynamic analysis of tri-generation with absorption chilling machine
    • Minciuc, E., Le Corre, O., Athanasovici, V., Tazerout, M., and Bitir, I. Thermodynamic analysis of tri-generation with absorption chilling machine. Appl. Therm. Eng., 2003, 23, 1391-1405.
    • (2003) Appl. Therm. Eng. , vol.23 , pp. 1391-1405
    • Minciuc, E.1    Le Corre, O.2    Athanasovici, V.3    Tazerout, M.4    Bitir, I.5
  • 8
    • 3042856935 scopus 로고    scopus 로고
    • Thermodynamic performance evaluation of combustion gas turbine cogener-ation system with reheat
    • Khaliq, A. and Kaushik, S. C. Thermodynamic performance evaluation of combustion gas turbine cogener-ation system with reheat. Appl. Therm. Eng., 2004, 24, 1785-1795.
    • (2004) Appl. Therm. Eng. , vol.24 , pp. 1785-1795
    • Khaliq, A.1    Kaushik, S.C.2
  • 9
    • 12444293832 scopus 로고    scopus 로고
    • Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle
    • Chen, C. K. and Su, Y. F. Exergetic efficiency optimization for an irreversible Brayton refrigeration cycle. Int. J. Therm. Sci., 2005, 44, 303-310.
    • (2005) Int. J. Therm. Sci. , vol.44 , pp. 303-310
    • Chen, C.K.1    Su, Y.F.2
  • 10
    • 34547461597 scopus 로고    scopus 로고
    • Exergetic efficiency optimization for an irreversible Carnot heat engine
    • Chang, T. B. Exergetic efficiency optimization for an irreversible Carnot heat engine. J. Mech., 2007, 23, 181-186.
    • (2007) J. Mech. , vol.23 , pp. 181-186
    • Chang, T.B.1
  • 11
    • 53949088432 scopus 로고    scopus 로고
    • Thermodynamic performance assessment of gas turbine trigeneration system for combined heat cold and power production. ASME Trans
    • Khaliq, A. and Kumar, R. Thermodynamic performance assessment of gas turbine trigeneration system for combined heat cold and power production. ASME Trans., J. Eng. Gas Turbine Power, 2008, 130, 1-4.
    • (2008) J. Eng. Gas Turbine Power , vol.130 , pp. 1-4
    • Khaliq, A.1    Kumar, R.2
  • 12
    • 61449135107 scopus 로고    scopus 로고
    • Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration
    • Khaliq, A. Exergy analysis of gas turbine trigeneration system for combined production of power heat and refrigeration. Int. J. Refrig., 2009, 32, 534-545.
    • (2009) Int. J. Refrig. , vol.32 , pp. 534-545
    • Khaliq, A.1
  • 13
    • 0013330005 scopus 로고    scopus 로고
    • Power augmentation through inlet cooling
    • Lukas, H. Power augmentation through inlet cooling. Global Gas-Turbine News, 1997, 37, 12-15.
    • (1997) Global Gas-Turbine News , vol.37 , pp. 12-15
    • Lukas, H.1
  • 14
    • 17644363034 scopus 로고    scopus 로고
    • Thermody-namic assessment of power requirement and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman
    • Dawoud, B., Zurigal, Y. H., and Bortmany, J. Thermody-namic assessment of power requirement and impact of different gas-turbine inlet air cooling techniques at two different locations in Oman. Appl. Therm. Eng., 2005, 25, 1579-1598.
    • (2005) Appl. Therm. Eng. , vol.25 , pp. 1579-1598
    • Dawoud, B.1    Zurigal, Y.H.2    Bortmany, J.3
  • 15
    • 33750498690 scopus 로고    scopus 로고
    • Inlet fogging of gas turbine engines: Climatic analysis of gas turbine evaporative cooling potential of international locations
    • Chaker, M. and Meher-Homji, C. B. Inlet fogging of gas turbine engines: climatic analysis of gas turbine evaporative cooling potential of international locations. ASME Trans., J. Eng. Gas Turbine Power, 2006, 128, 815-825.
    • (2006) ASME Trans. J. Eng. Gas Turbine Power , vol.128 , pp. 815-825
    • Chaker, M.1    Meher-Homji, C.B.2
  • 16
    • 0242573454 scopus 로고    scopus 로고
    • Augmentation of gas turbine performance using air coolers
    • Alhazmy, M. M. and Najjar, Y. S. H. Augmentation of gas turbine performance using air coolers. Appl. Therm. Eng., 2004, 24, 415-429.
    • (2004) Appl. Therm. Eng. , vol.24 , pp. 415-429
    • Alhazmy, M.M.1    Najjar, Y.S.H.2
  • 17
    • 33746781733 scopus 로고    scopus 로고
    • Performance enhancementofgas turbinesby inlet air-cooling in hot and humid climates
    • Alhazmy, M. M., Jassim, R. K., and Zaki, G. M. Performance enhancementofgas turbinesby inlet air-cooling in hot and humid climates. Int. J. Energy Res., 2006, 30, 777-797.
    • (2006) Int. J. Energy Res. , vol.30 , pp. 777-797
    • Alhazmy, M.M.1    Jassim, R.K.2    Zaki, G.M.3
  • 19
    • 38349147110 scopus 로고    scopus 로고
    • Brayton refrigeration cycle for gas turbine inlet air cooling
    • Galal, M. Z., Jassin Rahim, K., and Alhazmy Majed, M. Brayton refrigeration cycle for gas turbine inlet air cooling. Int. J. Energy Res., 2007, 31, 1292-1306.
    • (2007) Int. J. Energy Res. , vol.31 , pp. 1292-1306
    • Galal, M.Z.1    Jassin Rahim, K.2    Alhazmy Majed, M.3
  • 20
    • 61849100390 scopus 로고    scopus 로고
    • Energy and exergy analyses of compressor inlet air-cooled gas turbines using the Joule-Brayton refrigeration cycle
    • DOI: 10. 1243/09576509JPE658
    • Khaliq, A., Choudhary, K., and Dincer, I. Energy and exergy analyses of compressor inlet air-cooled gas turbines using the Joule-Brayton refrigeration cycle. Proc. IMechE, Part A: J. Power and Energy, 2009, 223(A1), 1-9. DOI: 10. 1243/09576509JPE658.
    • (2009) Proc. ImechE. Part A: J. Power and Energy , vol.223 A , Issue.1 , pp. 1-9
    • Khaliq, A.1    Choudhary, K.2    Dincer, I.3
  • 21
    • 0346398392 scopus 로고    scopus 로고
    • Theoretical and experimental investigation of an ammonia-water power and refrigeration thermodynamic cycle
    • Tamm, G., Goswami, D. Y., Lu, S., and Hasan, A. A. Theoretical and experimental investigation of an ammonia-water power and refrigeration thermodynamic cycle. Sol. Energy, 2004, 76, 217-228.
    • (2004) Sol. Energy , vol.76 , pp. 217-228
    • Tamm, G.1    Goswami, D.Y.2    Lu, S.3    Hasan, A.A.4
  • 22
    • 0028419333 scopus 로고
    • Models for predicting the performance of brayton-cycle engines
    • Korakianitis, T. and Wilson, D. G. Models for predicting the performance of brayton-cycle engines. ASME Trans., J. Eng. Gas Turbine Power, 1994, 116, 382-388.
    • (1994) ASME Trans. J. Eng. Gas Turbine Power , vol.116 , pp. 382-388
    • Korakianitis, T.1    Wilson, D.G.2
  • 23
    • 1842811831 scopus 로고    scopus 로고
    • Second-law based thermo-dynamic analysis of Brayton/Rankine combined power cycle with reheat
    • Khaliq, A. and Kaushik, S. C. Second-law based thermo-dynamic analysis of Brayton/Rankine combined power cycle with reheat. Appl. Energy, 2004, 78, 179-197.
    • (2004) Appl. Energy , vol.78 , pp. 179-197
    • Khaliq, A.1    Kaushik, S.C.2
  • 24
    • 0023111507 scopus 로고
    • Thermodynamic study of an indirect fired air turbine cogeneration system with reheat
    • Huang, F. F. and Wang, L. Thermodynamic study of an indirect fired air turbine cogeneration system with reheat. Trans. ASME, J. Eng. GasTurbine Power, 1987, 109, 16-21.
    • (1987) Trans. ASME. J. Eng. GasTurbine Power , vol.109 , pp. 16-21
    • Huang, F.F.1    Wang, L.2
  • 27
    • 0037054468 scopus 로고    scopus 로고
    • Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture
    • Bejan, A. Fundamentals of exergy analysis, entropy generation minimization, and the generation of flow architecture. Int. J. Energy Res., 2002, 26, 545-565.
    • (2002) Int. J. Energy Res. , vol.26 , pp. 545-565
    • Bejan, A.1
  • 28
    • 77953943819 scopus 로고    scopus 로고
    • Exergy analysis of an industrial waste heat recovery based cogeneration cycle for combined production of power and refrigeration
    • Khaliq, A., Kumar, R., and Dincer, I. Exergy analysis of an industrial waste heat recovery based cogeneration cycle for combined production of power and refrigeration. Trans. ASME, J. Energy Resour. Technol., 2009, 131, 1-7.
    • (2009) Trans. ASME. J. Energy Resour. Technol. , vol.131 , pp. 1-7
    • Khaliq, A.1    Kumar, R.2    Dincer, I.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.