메뉴 건너뛰기




Volumn , Issue , 2009, Pages

On the value of combining feature subset selection with genetic algorithms: Faster learning of coverage models

Author keywords

feature subset selection; genetic algorithms; software testing

Indexed keywords

COMMUNITY IS; CONTROL STRUCTURE; COVERAGE MODELS; FEATURE SUBSET SELECTION; MODEL GENERATION; RANDOMIZED TESTS; RUNTIMES; SCALING-UP; SOFTWARE DEVELOPMENT PROJECTS; TEST CASE COVERAGE; TIME CONSTRAINTS;

EID: 77953792009     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1540438.1540456     Document Type: Conference Paper
Times cited : (5)

References (23)
  • 1
    • 68349130927 scopus 로고    scopus 로고
    • Nighthawk: A two-level genetic-random unit test data generator
    • Available from
    • J. Andrews, F. Li, and T. Menzies. Nighthawk: A two-level genetic-random unit test data generator. In IEEE ASE'07, 2007. Available from http://menzies.us/pdf/07ase-nighthawk.pdf.
    • (2007) IEEE ASE'07
    • Andrews, J.1    Li, F.2    Menzies, T.3
  • 2
    • 0033907702 scopus 로고    scopus 로고
    • Automatically checking an implementation against its formal specification
    • January
    • S. Antoy and R. G. Hamlet. Automatically checking an implementation against its formal specification. IEEE Transactions on Software Engineering, 26(1):55-69, January 2000.
    • (2000) IEEE Transactions on Software Engineering , vol.26 , Issue.1 , pp. 55-69
    • Antoy, S.1    Hamlet, R.G.2
  • 4
    • 33749260356 scopus 로고    scopus 로고
    • Cover trees for nearest neighbor
    • Available from
    • A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In ICML'06, 2006. Available from http://hunch.net/~jl/projects/cover- tree/cover-tree.html.
    • (2006) ICML'06
    • Beygelzimer, A.1    Kakade, S.2    Langford, J.3
  • 5
    • 0023327532 scopus 로고
    • No silver bullet: Essence and accidents of software engineering
    • F. Brooks. No silver bullet: Essence and accidents of software engineering. IEEE Computer, 20(4):34-42, 1987.
    • (1987) IEEE Computer , vol.20 , Issue.4 , pp. 34-42
    • Brooks, F.1
  • 7
    • 84862328664 scopus 로고    scopus 로고
    • accessed February 2007
    • Cobertura Development Team. Cobertura web site. cobertura.sourceforge. net, accessed February 2007.
    • Cobertura Web Site
  • 9
    • 0010946791 scopus 로고
    • An analysis of the interacting roles of population size and crossover in genetic algorithms
    • Springer
    • K. A. DeJong and W. M. Spears. An analysis of the interacting roles of population size and crossover in genetic algorithms. In First Workshop on Parallel Problem Solving from Nature, pages 38-47. Springer, 1990.
    • (1990) First Workshop on Parallel Problem Solving from Nature , pp. 38-47
    • DeJong, K.A.1    Spears, W.M.2
  • 12
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • M. Hall and G. Holmes. Benchmarking attribute selection techniques for discrete class data mining. IEEE Transactions On Knowledge And Data Engineering, 15(6):1437-1447, 2003.
    • (2003) IEEE Transactions on Knowledge and Data Engineering , vol.15 , Issue.6 , pp. 1437-1447
    • Hall, M.1    Holmes, G.2
  • 14
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G. H. John. Wrappers for feature subset selection. Artificial Intelligence, 97(1-2):273-324, 1997.
    • (1997) Artificial Intelligence , vol.97 , Issue.1-2 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 15
    • 84992726552 scopus 로고
    • Estimating attributes: Analysis and extensions of relief
    • Springer-Verlag
    • I. Kononenko. Estimating attributes: Analysis and extensions of relief. In The Seventh European Conference on Machine Learning, pages pp. 171-182. Springer-Verlag, 1994.
    • (1994) The Seventh European Conference on Machine Learning , pp. 171-182
    • Kononenko, I.1
  • 16
    • 0030735972 scopus 로고    scopus 로고
    • Overcoming the myopia of inductive learning algorithms with relieff
    • Available from
    • I. Kononenko, E. Simec, and M. Robnik-Sikonja. Overcoming the myopia of inductive learning algorithms with relieff. Applied Intelligence, 7:39-55, 1997. Available from http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.56.4740.
    • (1997) Applied Intelligence , vol.7 , pp. 39-55
    • Kononenko, I.1    Simec, E.2    Robnik-Sikonja, M.3
  • 18
    • 33845782503 scopus 로고    scopus 로고
    • Data mining static code attributes to learn defect predictors
    • January Available from
    • T. Menzies, J. Greenwald, and A. Frank. Data mining static code attributes to learn defect predictors. IEEE Transactions on Software Engineering, January 2007. Available from http://menzies.us/pdf/06learnPredict. pdf.
    • (2007) IEEE Transactions on Software Engineering
    • Menzies, T.1    Greenwald, J.2    Frank, A.3
  • 23
    • 30544443570 scopus 로고    scopus 로고
    • Evolutionary test data generation: A comparison of fitness functions
    • January
    • A. Watkins and E. M. Hufnagel. Evolutionary test data generation: A comparison of fitness functions. Software Practice and Experience, 36:95-116, January 2006.
    • (2006) Software Practice and Experience , vol.36 , pp. 95-116
    • Watkins, A.1    Hufnagel, E.M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.