메뉴 건너뛰기




Volumn 21, Issue 11, 2009, Pages 3130-3178

Approximate learning algorithm in Boltzmann machines

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; ENERGY TRANSFER; PROBABILITY; STATISTICAL MODEL;

EID: 77953737086     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2009.08-08-844     Document Type: Article
Times cited : (37)

References (22)
  • 2
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • Hinton, G.E. (2002). Training products of experts by minimizing contrastive divergence. Neural Computation, 14, 1771-1800.
    • (2002) Neural Computation , vol.14 , pp. 1771-1800
    • Hinton, G.E.1
  • 4
    • 4243356456 scopus 로고
    • On the Bethe approximation for the random bond Ising model
    • Horiguchi, T. (1981). On the Bethe approximation for the random bond Ising model. Physica A, 107, 360-370.
    • (1981) Physica A , vol.107 , pp. 360-370
    • Horiguchi, T.1
  • 6
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • Kappen, H.J., & Rodríguez, F. B. (1998). Efficient learning in Boltzmann machines using linear response theory. Neural Comput., 10, 1137-1156.
    • (1998) Neural Comput. , vol.10 , pp. 1137-1156
    • Kappen, H.J.1    Rodríguez, F.B.2
  • 7
    • 0040105529 scopus 로고
    • Exactly solvable model of a spin glass
    • Morita, T., & Horiguchi, T. (1976). Exactly solvable model of a spin glass. Solid State Comm., 19, 833-835.
    • (1976) Solid State Comm. , vol.19 , pp. 833-835
    • Morita, T.1    Horiguchi, T.2
  • 10
    • 23844535141 scopus 로고    scopus 로고
    • Pelizzola, A. (2005). Cluster variation method in statistical physics and probabilistic graphical models. J. Phys. A: Math. and Gen., 38, R309-R339.
    • (2005) J. Phys. A: Math. and Gen. , vol.38
    • Pelizzola, A.1
  • 11
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson, C., & Anderson, J.R. (1987). A mean field theory learning algorithm for neural networks. Complex Systems, 1, 995-1019.
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.R.2
  • 12
    • 0001051762 scopus 로고
    • Convergence condition of the tap equation for the infinite-ranged Ising spin glass model
    • Plefka, T. (1982). Convergence condition of the tap equation for the infinite-ranged Ising spin glass model. J. Phys. A: Math. and Gen., 15, 1971-1978.
    • (1982) J. Phys. A: Math. and Gen. , vol.15 , pp. 1971-1978
    • Plefka, T.1
  • 13
    • 0142055134 scopus 로고    scopus 로고
    • Probabilistic inference by mean of cluster variation method and linear response theory
    • Tanaka, K. (2003). Probabilistic inference by mean of cluster variation method and linear response theory. IEICE Trans. on Information and Systems, E86-D, 1228-1242.
    • (2003) IEICE Trans. on Information and Systems , vol.E86-D , pp. 1228-1242
    • Tanaka, K.1
  • 14
    • 0001143296 scopus 로고    scopus 로고
    • Mean-field theory of Boltzmann machine learning
    • Tanaka, T. (1998). Mean-field theory of Boltzmann machine learning. Phys. Rev. E, 58, 2302-2310.
    • (1998) Phys. Rev. E , vol.58 , pp. 2302-2310
    • Tanaka, T.1
  • 16
    • 33748685798 scopus 로고    scopus 로고
    • Estimating the wrong graphical model: Benefits in the computation-limited setting
    • Wainwright, M.J. (2006). Estimating the "wrong" graphical model: Benefits in the computation-limited setting. Journal of Machine Learning Research, 7, 1829-1859.
    • (2006) Journal of Machine Learning Research , vol.7 , pp. 1829-1859
    • Wainwright, M.J.1
  • 17
    • 0037216891 scopus 로고    scopus 로고
    • Approximation inference in Boltzmann machines
    • Welling, M., & Teh, Y.W. (2003). Approximation inference in Boltzmann machines. Artificial Intelligence, 143, 19-50.
    • (2003) Artificial Intelligence , vol.143 , pp. 19-50
    • Welling, M.1    Teh, Y.W.2
  • 18
    • 0347526306 scopus 로고    scopus 로고
    • Linear response algorithms for approximate inference in graphical models
    • Welling, M., & Teh, Y.W. (2004). Linear response algorithms for approximate inference in graphical models. Neural Comput., 16, 197-221.
    • (2004) Neural Comput. , vol.16 , pp. 197-221
    • Welling, M.1    Teh, Y.W.2
  • 19
    • 33646852772 scopus 로고    scopus 로고
    • Triangular approximation for Ising model and its application to Boltzmann machine
    • Yasuda, M., & Horiguchi, T. (2006). Triangular approximation for Ising model and its application to Boltzmann machine. Physica A, 836, 83-95.
    • (2006) Physica A , vol.836 , pp. 83-95
    • Yasuda, M.1    Horiguchi, T.2
  • 20
    • 33847279947 scopus 로고    scopus 로고
    • The relationship between Plefka's expansion and the cluster variation method
    • Yasuda, M., & Tanaka, K. (2006). The relationship between Plefka's expansion and the cluster variation method. J. Phys. Soc. Jpn., 75, 1-8.
    • (2006) J. Phys. Soc. Jpn. , vol.75 , pp. 1-8
    • Yasuda, M.1    Tanaka, K.2
  • 21
    • 34547790844 scopus 로고    scopus 로고
    • The mathematical structure of the approximate linear response relation
    • Yasuda, M., & Tanaka, K. (2007). The mathematical structure of the approximate linear response relation. J. Phys. A: Math. and Theor., 40, 9993-10007.
    • (2007) J. Phys. A: Math. and Theor. , vol.40 , pp. 9993-10007
    • Yasuda, M.1    Tanaka, K.2
  • 22
    • 23744513375 scopus 로고    scopus 로고
    • Constructing free-energy approximations and generalized belief propagation algorithms
    • Yedidia, J.S., Freeman, W.T., & Weiss, Y. (2005). Constructing free-energy approximations and generalized belief propagation algorithms. IEEE Transactions on Information Theory, 51, 2282-2312.
    • (2005) IEEE Transactions on Information Theory , vol.51 , pp. 2282-2312
    • Yedidia, J.S.1    Freeman, W.T.2    Weiss, Y.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.