메뉴 건너뛰기




Volumn 143, Issue 1, 2003, Pages 19-50

Approximate inference in Boltzmann machines

Author keywords

Advanced mean field methods; Boltzmann machines; Inference; Loopy belief propagation

Indexed keywords

ALGORITHMS; APPROXIMATION THEORY; GIBBS FREE ENERGY; LEARNING SYSTEMS; OPTIMIZATION; THEOREM PROVING;

EID: 0037216891     PISSN: 00043702     EISSN: None     Source Type: Journal    
DOI: 10.1016/S0004-3702(02)00361-2     Document Type: Article
Times cited : (70)

References (33)
  • 1
    • 0029587111 scopus 로고
    • Information geometry of the EM and em algorithms for neural networks
    • Amari S. Information geometry of the EM and em algorithms for neural networks. Neural Networks. 8:1995;1379-1408.
    • (1995) Neural Networks , vol.8 , pp. 1379-1408
    • Amari, S.1
  • 3
    • 0001090290 scopus 로고
    • How to expand around mean-field theory using high-temperature expansions
    • Georges A., Yedidia J.S. How to expand around mean-field theory using high-temperature expansions. J. Phys A: Math. Gen. 24:1991;2173-2192.
    • (1991) J. Phys A: Math. Gen. , vol.24 , pp. 2173-2192
    • Georges, A.1    Yedidia, J.S.2
  • 6
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield J.J. Neural networks and physical systems with emergent collective computational abilities. Proc. Nat. Acad. Sci. 79:1992;2554-2558.
    • (1992) Proc. Nat. Acad. Sci. , vol.79 , pp. 2554-2558
    • Hopfield, J.J.1
  • 7
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • Jordan M.I., Ghahramani Z., Jaakkola T., Saul L.K. An introduction to variational methods for graphical models. Machine Learning. 37:(2):1999;183-233.
    • (1999) Machine Learning , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.3    Saul, L.K.4
  • 8
    • 0032344980 scopus 로고    scopus 로고
    • Belief propagation vs. TAP for decoding corrupted messages
    • Kabashima Y., Saad D. Belief propagation vs. TAP for decoding corrupted messages. Europhys. Lett. 44:1998;668.
    • (1998) Europhys. Lett. , vol.44 , pp. 668
    • Kabashima, Y.1    Saad, D.2
  • 9
    • 0001000562 scopus 로고    scopus 로고
    • Efficient learning in Boltzmann machines using linear response theory
    • Kappen H.J., Rodriguez F.B. Efficient learning in Boltzmann machines using linear response theory. Neural Comput. 10:1998;1137-1156.
    • (1998) Neural Comput. , vol.10 , pp. 1137-1156
    • Kappen, H.J.1    Rodriguez, F.B.2
  • 14
    • 0000040947 scopus 로고
    • Variational principle for the distribution function of the effective field for the random Ising model in the Bethe approximation
    • Morita T. Variational principle for the distribution function of the effective field for the random Ising model in the Bethe approximation. Physica A. 98:1979;566-572.
    • (1979) Physica A , vol.98 , pp. 566-572
    • Morita, T.1
  • 17
    • 0343791148 scopus 로고
    • Electric moments of molecules in liquids
    • Onsager L. Electric moments of molecules in liquids. J. Amer. Chem. Soc. 58:1936;1486-1493.
    • (1936) J. Amer. Chem. Soc. , vol.58 , pp. 1486-1493
    • Onsager, L.1
  • 19
    • 84898996834 scopus 로고    scopus 로고
    • A mean field approach to Bayes learning in large feed-forward neural networks
    • Cambridge, MA: MIT Press
    • Opper M., Winther O. A mean field approach to Bayes learning in large feed-forward neural networks. Advances in Neural Information Processing Systems. 9:1997;225-331 MIT Press, Cambridge, MA.
    • (1997) Advances in Neural Information Processing Systems , vol.9 , pp. 225-331
    • Opper, M.1    Winther, O.2
  • 23
    • 0001406440 scopus 로고
    • A mean field theory learning algorithm for neural networks
    • Peterson C., Anderson J. A mean field theory learning algorithm for neural networks. Complex Systems. 1:1987;995-1019.
    • (1987) Complex Systems , vol.1 , pp. 995-1019
    • Peterson, C.1    Anderson, J.2
  • 24
    • 0001051762 scopus 로고
    • Convergence condition of the TAP equations for infinite ranged Ising spin glass model
    • Plefka T. Convergence condition of the TAP equations for infinite ranged Ising spin glass model. J. Phys. A. 15:1982;1971.
    • (1982) J. Phys. A , vol.15 , pp. 1971
    • Plefka, T.1
  • 26
    • 84988779772 scopus 로고    scopus 로고
    • Correctness of local probability propagation in graphical models with loops
    • Weiss Y. Correctness of local probability propagation in graphical models with loops. Neural Comput. 12:2000;1-41.
    • (2000) Neural Comput. , vol.12 , pp. 1-41
    • Weiss, Y.1
  • 27
    • 33749241036 scopus 로고    scopus 로고
    • Comparing the mean field method and belief propagation for approximate inference in MRFs
    • Cambridge, MA: MIT Press
    • Weiss Y. Comparing the mean field method and belief propagation for approximate inference in MRFs. Advanced Mean Field Methods - Theory and Practice. 2001;MIT Press, Cambridge, MA.
    • (2001) Advanced Mean Field Methods - Theory and Practice
    • Weiss, Y.1
  • 28
    • 0003220581 scopus 로고    scopus 로고
    • Correctness of belief propagation in Gaussian graphical models of arbitrary topology
    • Cambridge, MA: MIT Press
    • Weiss Y., Freeman W. Correctness of belief propagation in Gaussian graphical models of arbitrary topology. Advances in Neural Information Processing Systems. 12:1999;MIT Press, Cambridge, MA.
    • (1999) Advances in Neural Information Processing Systems , vol.12
    • Weiss, Y.1    Freeman, W.2
  • 33
    • 0036636878 scopus 로고    scopus 로고
    • CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation
    • Yuille A.L. CCCP algorithms to minimize the Bethe and Kikuchi free energies: Convergent alternatives to belief propagation. Neural Comput. 14:(7):2002;1691-1722.
    • (2002) Neural Comput. , vol.14 , Issue.7 , pp. 1691-1722
    • Yuille, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.