메뉴 건너뛰기




Volumn 5, Issue 2, 2010, Pages 074-085

A soft computing approach for modeling of severity of faults in software systems

Author keywords

Accuracy; Fuzzy; Genetic algorithm; MAE; Neuro fuzzy; Particle swarm optimization (PSO); RMSE

Indexed keywords


EID: 77953709219     PISSN: 19921950     EISSN: None     Source Type: Journal    
DOI: None     Document Type: Article
Times cited : (26)

References (36)
  • 1
    • 84902156141 scopus 로고    scopus 로고
    • Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence
    • Springer-Verlag Germany. Jose Mira and Alberto Prieto (Eds.)
    • Abraham A (2001). Neuro-Fuzzy Systems: State-of-the-Art Modeling Techniques, Connectionist Models of Neurons, Learning Processes, and Artificial Intelligence. Lecture Notes in Computer Science. Springer-Verlag Germany. Jose Mira and Alberto Prieto (Eds.). 2084: 269-276.
    • (2001) Lecture Notes In Computer Science , pp. 269-276
    • Abraham, A.1
  • 2
    • 57849113374 scopus 로고    scopus 로고
    • Hybrid Intelligent Systems: Evolving Intelligence in Hierarchical Layers
    • Abraham A (2005). Hybrid Intelligent Systems: Evolving Intelligence in Hierarchical Layers. Stud. Fuzziness Soft Comput. 173:159-179.
    • (2005) Stud. Fuzziness Soft Comput , vol.173 , pp. 159-179
    • Abraham, A.1
  • 3
    • 77953728251 scopus 로고    scopus 로고
    • Software Maintenance Severity Prediction with Soft Computing Approach. International Conference on Computer, Electrical, and Systems Science and Engineering
    • Ardil E, Ucer E, Sandhu PS (2009). Software Maintenance Severity Prediction with Soft Computing Approach. International Conference on Computer, Electrical, and Systems Science and Engineering. Penang (Malaysia). 38: 139-144.
    • (2009) Penang (Malaysia) , vol.38 , pp. 139-144
    • Ardil, E.1    Ucer, E.2    Sandhu, P.S.3
  • 6
    • 0026923465 scopus 로고
    • Learning and Tuning Fuzzy Logic Controllers through Reinforcements
    • Bherenji HR, Khedkar P (1992). Learning and Tuning Fuzzy Logic Controllers through Reinforcements. IEEE Trans. Neural Networks. 3: 724-740.
    • (1992) IEEE Trans. Neural Networks , vol.3 , pp. 724-740
    • Bherenji, H.R.1    Khedkar, P.2
  • 12
    • 0035152294 scopus 로고    scopus 로고
    • Comparing case-based reasoning classifiers for predicting high risk software components
    • Eman K, Benlarbi S, Goel N, Rai S (2001). Comparing case-based reasoning classifiers for predicting high risk software components. J. Syst. Software 55(3): 301 - 310.
    • (2001) J. Syst. Software , vol.55 , Issue.3 , pp. 301-310
    • Eman, K.1    Benlarbi, S.2    Goel, N.3    Rai, S.4
  • 13
    • 0031999146 scopus 로고    scopus 로고
    • An Online Self Constructing Neural Fuzzy Inference Network and its Applications
    • Feng JC, Teng LC (1998), An Online Self Constructing Neural Fuzzy Inference Network and its Applications. IEEE Trans. Fuzzy Systems. 6(1): 12-32.
    • (1998) IEEE Trans. Fuzzy Systems. , vol.6 , Issue.1 , pp. 12-32
    • Feng, J.C.1    Teng, L.C.2
  • 14
    • 0033346610 scopus 로고    scopus 로고
    • A Critique of Software Defect Prediction Models
    • Fenton NE, Neil M (1999). A Critique of Software Defect Prediction Models. IEEE Trans. Software Eng. arch. 25(5): 675 - 689.
    • (1999) IEEE Trans. Software Eng. Arch. , vol.25 , Issue.5 , pp. 675-689
    • Fenton, N.E.1    Neil, M.2
  • 16
    • 0029273384 scopus 로고
    • Neuro-Fuzzy Modeling and Control
    • Jang JSR, Sun CT (1995). Neuro-Fuzzy Modeling and Control. Proc. IEEE. 83(3): 378-406.
    • (1995) Proc. IEEE. , vol.83 , Issue.3 , pp. 378-406
    • Jang, J.S.R.1    Sun, C.T.2
  • 19
    • 0005976679 scopus 로고    scopus 로고
    • Dynamic Evolving Fuzzy Neural Networks with 'm-out-of-n' Activation Nodes for On-line Adaptive Systems
    • Department of information science, University of Otago
    • Kasabov N, Song Q (1999). Dynamic Evolving Fuzzy Neural Networks with 'm-out-of-n' Activation Nodes for On-line Adaptive Systems. Technical Report TR99/04. Department of information science, University of Otago.
    • (1999) Technical Report TR99/04
    • Kasabov, N.1    Song, Q.2
  • 22
    • 0025384365 scopus 로고
    • Predicting Software Development Errors using Complexity Metrics
    • Khoshgoftaar TM, Munson JC (1990). Predicting Software Development Errors using Complexity Metrics. IEEE J. Selected Areas Commun. 8(2): 253 -261.
    • (1990) IEEE J. Selected Areas Commun. , vol.8 , Issue.2 , pp. 253-261
    • Khoshgoftaar, T.M.1    Munson, J.C.2
  • 23
    • 37349129968 scopus 로고    scopus 로고
    • Tree-based software quality estimation models for fault prediction. METRICS 2002
    • Khoshgoftaar TM, Seliya N (2002). Tree-based software quality estimation models for fault prediction. METRICS 2002. 8th IIIE Symposium on Software Metrics. pp: 203-214.
    • (2002) 8th IIIE Symposium On Software Metrics , pp. 203-214
    • Khoshgoftaar, T.M.1    Seliya, N.2
  • 25
    • 0026366218 scopus 로고
    • Neural Network based Fuzzy Logic Control and Decision System
    • Lin CT, Lee CSG (1991). Neural Network based Fuzzy Logic Control and Decision System. IEEE Trans. Comput. 40(12): 1320-1336.
    • (1991) IEEE Trans. Comput. , vol.40 , Issue.12 , pp. 1320-1336
    • Lin, C.T.1    Lee, C.S.G.2
  • 26
    • 0016451032 scopus 로고
    • An experiment in linguistic synthesis with a fuzzy logic controller
    • Mamdani EH, Assilian S (1975). An experiment in linguistic synthesis with a fuzzy logic controller. Int. J. Man-Machine Studies, Vol. 7(1): 1-13.
    • (1975) Int. J. Man-Machine Studies , vol.7 , Issue.1 , pp. 1-13
    • Mamdani, E.H.1    Assilian, S.2
  • 28
    • 0025399874 scopus 로고
    • Regression Modeling of Software Quality: An Empirical Investigation
    • Munson J, Khoshgoftaar T (1990). Regression Modeling of Software Quality: An Empirical Investigation. J. Info. Software Technol. 32(2): 106 - 114.
    • (1990) J. Info. Software Technol. , vol.32 , Issue.2 , pp. 106-114
    • Munson, J.1    Khoshgoftaar, T.2
  • 30
    • 77953723729 scopus 로고    scopus 로고
    • Intelligence System for Software Maintenance Severity Prediction
    • Sandhu PS, Kumar S, Singh H (2007). Intelligence System for Software Maintenance Severity Prediction. J. Comput. Sci. 3(5): 281-288.
    • (2007) J. Comput. Sci. , vol.3 , Issue.5 , pp. 281-288
    • Sandhu, P.S.1    Kumar, S.2    Singh, H.3
  • 33
    • 77953726344 scopus 로고    scopus 로고
    • Web URL WEKA
    • Web URL WEKA: www.cs.waikato.ac.nz/~ml/weka/.
  • 34
    • 77953715978 scopus 로고    scopus 로고
    • Web URL
    • Web URL: http://www.swarmintelligence.org/tutorials.php
  • 36
    • 0015558134 scopus 로고
    • Outline of a new approach to the analysis of complex systems and decision processes
    • Zadeh LA (1973). Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man Cybernetics 3(1): 28-44.
    • (1973) IEEE Trans. Syst. Man Cybernetics , vol.3 , Issue.1 , pp. 28-44
    • Zadeh, L.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.