메뉴 건너뛰기




Volumn 13, Issue 3, 2010, Pages 271-290

On the choice of effectiveness measures for learning to rank

Author keywords

Empirical risk minimization; Evaluation; Evaluation metrics; Learning to rank; Training

Indexed keywords


EID: 77953632234     PISSN: 13864564     EISSN: 15737659     Source Type: Journal    
DOI: 10.1007/s10791-009-9116-x     Document Type: Article
Times cited : (26)

References (18)
  • 1
    • 33746264710 scopus 로고    scopus 로고
    • Aslam, J. A., Yilmaz, E., & Pavlu V. (2005). The maximum entropy method for analyzing retrieval measures. In Marchionini, G., Moffat A., Tait, J., Baeza-Yates, R., & Ziviani, N., (Eds.), Proceedings of the 28th annual international ACM SIGIR conference on research and development in information retrieval (pp. 27-34). ACM Press, August 2005.
  • 2
    • 84864039510 scopus 로고    scopus 로고
    • Learning to rank with nonsmooth cost functions
    • B. Schölkopf, J. C. Platt, and T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Burges, C. J. C., Ragno, R., & Le Q. V. (2006). Learning to rank with nonsmooth cost functions. In Schölkopf, B., Platt, J. C., & Hoffman, T. (Eds.), NIPS (pp. 193-200). Cambridge, MA: MIT Press.
    • (2006) Nips , pp. 193-200
    • Burges, C.J.C.1    Ragno, R.2    Le, Q.V.3
  • 3
    • 31844446958 scopus 로고    scopus 로고
    • Burges, C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., et al. (2005). Learning to rank using gradient descent. In ICML '05: Proceedings of the 22nd international conference on machine learning (pp. 89-96). New York, NY, USA: ACM.
  • 4
    • 77953640710 scopus 로고    scopus 로고
    • Donmez, P., Svore, K., & Burges, C. J. (2008). On the optimality of lambdarank. Technical report, Microsoft Research.
  • 5
    • 0033645041 scopus 로고    scopus 로고
    • Järvelin, K., & Kekäläinen, J. (2000). Ir evaluation methods for retrieving highly relevant documents. In SIGIR '00: Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval (pp. 41-48). New York, NY, USA: ACM.
  • 6
    • 31844446804 scopus 로고    scopus 로고
    • Joachims, T. (2005). A support vector method for multivariate performance measures. In ICML '05: Proceedings of the 22nd international conference on Machine learning (pp 377-384). New York, NY, USA: ACM.
  • 7
    • 77953641599 scopus 로고    scopus 로고
    • Le, Q. V., & Smola. A. J. (2007). Direct optimization of ranking measures. CoRR, abs/0704. 3359.
  • 8
    • 7044227562 scopus 로고    scopus 로고
    • Ling, C. X., Huang, J., & Zhang, H. (2003). Auc: A statistically consistent and more discriminating measure than accuracy. In IJCAI '03: Proceedings of the 18th international conference on artificial intelligence (pp. 329-341).
  • 9
    • 77953642943 scopus 로고    scopus 로고
    • Liu, T.-Y., & He Y. (2008). Are algorithms directly optimizing ir measures really direct? Technical report, Microsoft Research.
  • 10
    • 57349087085 scopus 로고    scopus 로고
    • Robertson, S. (2008). A new interpretation of average precision. In SIGIR '08: Proceedings of the 31st annual international ACM SIGIR conference on Research and development in information retrieval (pp. 689-690). New York, NY, USA: ACM.
  • 11
    • 34250177239 scopus 로고    scopus 로고
    • On rank-based effectiveness measures and optimization
    • Robertson, S., & Zaragoza H. (2007). On rank-based effectiveness measures and optimization. Information Retrieval, 10(3), 321-339.
    • (2007) Information Retrieval , vol.10 , Issue.3 , pp. 321-339
    • Robertson, S.1    Zaragoza, H.2
  • 12
    • 84885608872 scopus 로고    scopus 로고
    • Sanderson, M., & Zobel J. (2005). Information retrieval system evaluation: Effort, sensitivity, and reliability. In Baeza-Yates, R. A., Ziviani, N., Marchionini, G., Moffat, A., & Tait, J. (Eds.), SIGIR (pp. 162-169). ACM.
  • 13
    • 42549161120 scopus 로고    scopus 로고
    • Taylor, M., Guiver, J., Robertson, S., & Minka, T. (2008). Softrank: optimizing non-smooth rank metrics. In WSDM '08: Proceedings of the international conference on Web search and web data mining (pp. 77-86) New York, NY, USA: ACM.
  • 14
    • 34547617682 scopus 로고    scopus 로고
    • Taylor, M., Zaragoza, H., Craswell, N., Robertson, S., & Burges, C. (2006). Optimisation methods for ranking functions with multiple parameters. In CIKM '06: Proceedings of the 15th ACM international conference on Information and knowledge management (pp. 585-593). New York, NY, USA: ACM.
  • 15
    • 57349093460 scopus 로고    scopus 로고
    • Webber, W., Moffat, A., Zobel, J., & Sakai, T. (2008). Precision-at-ten considered redundant. In SIGIR (pp. 695-696). New York, NY, USA: ACM.
  • 16
    • 36448954244 scopus 로고    scopus 로고
    • Xu, J., & Li, H. (2007). Adarank: a boosting algorithm for information retrieval. In SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 391-398). New York, NY, USA: ACM.
  • 17
    • 48649105446 scopus 로고    scopus 로고
    • Estimating average precision when judgments are incomplete
    • Yilmaz, E., & Aslam J. A. (2008). Estimating average precision when judgments are incomplete. Knowledge and Information Systems, 16(2), 173-211, August 2008.
    • (2008) Knowledge and Information Systems , vol.16 , Issue.2 , pp. 173-211
    • Yilmaz, E.1    Aslam, J.A.2
  • 18
    • 36448983903 scopus 로고    scopus 로고
    • Yue, Y., Finleym, T., Radlinski, F., & Joachims, T. (2007). A support vector method for optimizing average precision. In SIGIR '07: Proceedings of the 30th annual international ACM SIGIR conference on Research and development in information retrieval (pp. 271-278). New York, NY, USA: ACM.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.