-
1
-
-
0034547253
-
Order conditions of stochastic Runge-Kutta methods by B-series
-
BURRAGE, K. and BURRAGE, P. M. (2000). Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J. Numer. Anal. 38 1626-1646.
-
(2000)
SIAM J. Numer. Anal.
, vol.38
, pp. 1626-1646
-
-
Burrage, K.1
Burrage, P.M.2
-
3
-
-
33747166098
-
B-series and order conditions for exponential integrators
-
BERLAND, H., OWREN, B. and SKAFLESTAD, B. (2005). B-series and order conditions for exponential integrators. SIAM J. Numer. Anal. 43 1715-1727.
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, pp. 1715-1727
-
-
Berland, H.1
Owren, B.2
Skaflestad, B.3
-
5
-
-
0036501083
-
Exponential time differencing for stiff systems
-
COX, S. M. and MATTHEWS, P. C. (2002). Exponential time differencing for stiff systems. J. Comput. Phys. 176 430-455.
-
(2002)
J. Comput. Phys.
, vol.176
, pp. 430-455
-
-
Cox, S.M.1
Matthews, P.C.2
-
7
-
-
0035605884
-
Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations
-
DAVIE, A. M. and GAINES, J. G. (2001). Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comp. 70 121-134.
-
(2001)
Math. Comp.
, vol.70
, pp. 121-134
-
-
Davie, A.M.1
Gaines, J.G.2
-
10
-
-
26944469040
-
Itôs- and Tanaka's-type formulae for the stochastic heat equation: The linear case
-
GRADINARU, M.,NOURDIN, I. and TINDEL, S. (2005). Itôs- and Tanaka's-type formulae for the stochastic heat equation: The linear case. J. Funct. Anal. 228 114-143.
-
(2005)
J. Funct. Anal.
, vol.228
, pp. 114-143
-
-
Gradinaru, M.1
Nourdin, I.2
Tindel, S.3
-
11
-
-
0043228001
-
A note on Euler's approximations
-
GYÖNGY, I. (1998). A note on Euler's approximations. Potential Anal. 8 205-216.
-
(1998)
Potential Anal
, vol.8
, pp. 205-216
-
-
Gyöngy, I.1
-
12
-
-
0041725493
-
Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I
-
GYÖNGY, I. (1998). Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9 1-25.
-
(1998)
Potential Anal.
, vol.9
, pp. 1-25
-
-
Gyöngy, I.1
-
13
-
-
0042078403
-
Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II
-
GYÖNGY, I. (1999). Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11 1-37.
-
(1999)
Potential Anal.
, vol.11
, pp. 1-37
-
-
Gyöngy, I.1
-
14
-
-
18144433566
-
On the splitting-up method and stochastic partial differential equations
-
GYÖNGY, I. and KRYLOV, N. (2003). On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31 564-591.
-
(2003)
Ann. Probab.
, vol.31
, pp. 564-591
-
-
Gyöngy, I.1
Krylov, N.2
-
15
-
-
0037209607
-
Approximation for semilinear stochastic evolution equations
-
HAUSENBLAS, E. (2003). Approximation for semilinear stochastic evolution equations. Potential Anal. 18 141-186.
-
(2003)
Potential Anal
, vol.18
, pp. 141-186
-
-
Hausenblas, E.1
-
16
-
-
0002279610
-
Exponential integrators for large systems of differential equations
-
HOCHBRUCK, M., LUBICH, C. and SELHOFER, H. (1998). Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19 1552-1574.
-
(1998)
SIAM J. Sci. Comput.
, vol.19
, pp. 1552-1574
-
-
Hochbruck, M.1
Lubich, C.2
Selhofer, H.3
-
17
-
-
33646264630
-
Explicit exponential Runge-Kutta methods for semilinear parabolic problems
-
HOCHBRUCK, M. and OSTERMANN, A. (2005). Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43 1069-1090.
-
(2005)
SIAM J. Numer. Anal.
, vol.43
, pp. 1069-1090
-
-
Hochbruck, M.1
Ostermann, A.2
-
18
-
-
14844318087
-
Exponential Runge-Kutta methods for parabolic problems
-
HOCHBRUCK, M. and OSTERMANN, A. (2005). Exponential Runge-Kutta methods for parabolic problems. Appl. Numer. Math. 53 323-339.
-
(2005)
Appl. Numer. Math.
, vol.53
, pp. 323-339
-
-
Hochbruck, M.1
Ostermann, A.2
-
22
-
-
70350393847
-
Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients
-
JENTZEN, A. (2009). Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 4 375-404.
-
(2009)
Potential Anal
, vol.4
, pp. 375-404
-
-
Jentzen, A.1
-
23
-
-
61849107033
-
Pathwise Taylor schemes for random ordinary differential equations
-
JENTZEN, A. and KLOEDEN, P. E. (2009). Pathwise Taylor schemes for random ordinary differential equations. BIT 49 113-140.
-
(2009)
BIT
, vol.49
, pp. 113-140
-
-
Jentzen, A.1
Kloeden, P.E.2
-
24
-
-
58149125901
-
Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise
-
JENTZEN, A. and KLOEDEN, P. E. (2009). Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 649-667.
-
(2009)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.465
, pp. 649-667
-
-
Jentzen, A.1
Kloeden, P.E.2
-
25
-
-
71149088745
-
The numerical approximation of stochastic partial differential equations
-
JENTZEN, A. and KLOEDEN, P. E. (2009). The numerical approximation of stochastic partial differential equations. Milan J. Math. 77 205-244.
-
(2009)
Milan J. Math.
, vol.77
, pp. 205-244
-
-
Jentzen, A.1
Kloeden, P.E.2
-
26
-
-
84894226734
-
Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients
-
JENTZEN, A.,KLOEDEN, P. E. andNEUENKIRCH, A. (2009). Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112 41-64.
-
(2009)
Numer. Math.
, vol.112
, pp. 41-64
-
-
Jentzen, A.1
Kloeden, P.E.2
Neuenkirch, A.3
-
27
-
-
22544474620
-
Fourth-order time-stepping for stiff PDEs
-
KASSAM, A.-K. and TREFETHEN, L. N. (2005). Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26 1214-1233.
-
(2005)
SIAM J. Sci. Comput.
, vol.26
, pp. 1214-1233
-
-
Kassam, A.-K.1
Trefethen, L.N.2
-
28
-
-
36348939995
-
Pathwise convergent higher order numerical schemes for random ordinary differential equations
-
KLOEDEN, P. E. and JENTZEN, A. (2007). Pathwise convergent higher order numerical schemes for random ordinary differential equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 2929-2944.
-
(2007)
Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
, vol.463
, pp. 2929-2944
-
-
Kloeden, P.E.1
Jentzen, A.2
-
30
-
-
10844237437
-
Generalized integrating factor methods for stiff PDEs
-
KROGSTAD, S. (2005). Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203 72-88.
-
(2005)
J. Comput. Phys.
, vol.203
, pp. 72-88
-
-
Krogstad, S.1
-
31
-
-
0001202958
-
Generalized Runge-Kutta processes for stable systems with large Lipschitz constants
-
LAWSON, J. D. (1967). Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4 372-380.
-
(1967)
SIAM J. Numer. Anal.
, vol.4
, pp. 372-380
-
-
Lawson, J.D.1
-
32
-
-
34250182382
-
Lower bounds and nonuniform time discretization for approximation of stochastic heat equations
-
MÜLLER-GRONBACH, T. and RITTER, K. (2007). Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7 135-181.
-
(2007)
Found. Comput. Math.
, vol.7
, pp. 135-181
-
-
Müller-Gronbach, T.1
Ritter, K.2
-
33
-
-
34250880991
-
An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise
-
MÜLLER-GRONBACH, T. and RITTER, K. (2007). An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47 393-418.
-
(2007)
BIT
, vol.47
, pp. 393-418
-
-
Müller-Gronbach, T.1
Ritter, K.2
-
34
-
-
56549110155
-
Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise
-
Springer, Berlin
-
MÜLLER-GRONBACH, T., RITTER, K. andWAGNER, T. (2008). Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise. In Monte Carlo and Quasi-Monte Carlo Methods 2006 577-589. Springer, Berlin.
-
(2008)
Monte Carlo and Quasi-Monte Carlo Methods 2006
, pp. 577-589
-
-
Müller-Gronbach, T.1
Ritter, K.2
Wagner, T.3
-
36
-
-
33745319450
-
A class of explicit exponential general linear methods
-
OSTERMANN, A., THALHAMMER, M. andWRIGHT, W. M. (2006). A class of explicit exponential general linear methods. BIT 46 409-431.
-
(2006)
BIT
, vol.46
, pp. 409-431
-
-
Ostermann, A.1
Thalhammer, M.2
Wright, W.M.3
-
39
-
-
8344274262
-
Stochastic Taylor expansions for the expectation of functionals of diffusion processes
-
RÖSSLER, A. (2004). Stochastic Taylor expansions for the expectation of functionals of diffusion processes. Stoch. Anal. Appl. 22 1553-1576.
-
(2004)
Stoch. Anal. Appl.
, vol.22
, pp. 1553-1576
-
-
Rössler, A.1
-
40
-
-
30444461217
-
Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations
-
RÖSSLER, A. (2006). Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations. Stoch. Anal. Appl. 24 97-134.
-
(2006)
Stoch. Anal. Appl.
, vol.24
, pp. 97-134
-
-
Rössler, A.1
-
42
-
-
0032676044
-
Numerical methods for stochastic parabolic PDEs
-
SHARDLOW, T. (1999). Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20 121-145.
-
(1999)
Numer. Funct. Anal. Optim.
, vol.20
, pp. 121-145
-
-
Shardlow, T.1
|