메뉴 건너뛰기




Volumn 38, Issue 2, 2010, Pages 532-569

Taylor expansions of solutions of stochastic partial differential equations with additive noise

Author keywords

SPDE; Stochastic partial differential equations; Stochastic trees; Strong convergence; Taylor expansions

Indexed keywords


EID: 77953606984     PISSN: 00911798     EISSN: None     Source Type: Journal    
DOI: 10.1214/09-AOP500     Document Type: Article
Times cited : (57)

References (42)
  • 1
    • 0034547253 scopus 로고    scopus 로고
    • Order conditions of stochastic Runge-Kutta methods by B-series
    • BURRAGE, K. and BURRAGE, P. M. (2000). Order conditions of stochastic Runge-Kutta methods by B-series. SIAM J. Numer. Anal. 38 1626-1646.
    • (2000) SIAM J. Numer. Anal. , vol.38 , pp. 1626-1646
    • Burrage, K.1    Burrage, P.M.2
  • 3
    • 33747166098 scopus 로고    scopus 로고
    • B-series and order conditions for exponential integrators
    • BERLAND, H., OWREN, B. and SKAFLESTAD, B. (2005). B-series and order conditions for exponential integrators. SIAM J. Numer. Anal. 43 1715-1727.
    • (2005) SIAM J. Numer. Anal. , vol.43 , pp. 1715-1727
    • Berland, H.1    Owren, B.2    Skaflestad, B.3
  • 5
    • 0036501083 scopus 로고    scopus 로고
    • Exponential time differencing for stiff systems
    • COX, S. M. and MATTHEWS, P. C. (2002). Exponential time differencing for stiff systems. J. Comput. Phys. 176 430-455.
    • (2002) J. Comput. Phys. , vol.176 , pp. 430-455
    • Cox, S.M.1    Matthews, P.C.2
  • 7
    • 0035605884 scopus 로고    scopus 로고
    • Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations
    • DAVIE, A. M. and GAINES, J. G. (2001). Convergence of numerical schemes for the solution of parabolic stochastic partial differential equations. Math. Comp. 70 121-134.
    • (2001) Math. Comp. , vol.70 , pp. 121-134
    • Davie, A.M.1    Gaines, J.G.2
  • 10
    • 26944469040 scopus 로고    scopus 로고
    • Itôs- and Tanaka's-type formulae for the stochastic heat equation: The linear case
    • GRADINARU, M.,NOURDIN, I. and TINDEL, S. (2005). Itôs- and Tanaka's-type formulae for the stochastic heat equation: The linear case. J. Funct. Anal. 228 114-143.
    • (2005) J. Funct. Anal. , vol.228 , pp. 114-143
    • Gradinaru, M.1    Nourdin, I.2    Tindel, S.3
  • 11
    • 0043228001 scopus 로고    scopus 로고
    • A note on Euler's approximations
    • GYÖNGY, I. (1998). A note on Euler's approximations. Potential Anal. 8 205-216.
    • (1998) Potential Anal , vol.8 , pp. 205-216
    • Gyöngy, I.1
  • 12
    • 0041725493 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I
    • GYÖNGY, I. (1998). Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. I. Potential Anal. 9 1-25.
    • (1998) Potential Anal. , vol.9 , pp. 1-25
    • Gyöngy, I.1
  • 13
    • 0042078403 scopus 로고    scopus 로고
    • Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II
    • GYÖNGY, I. (1999). Lattice approximations for stochastic quasi-linear parabolic partial differential equations driven by space-time white noise. II. Potential Anal. 11 1-37.
    • (1999) Potential Anal. , vol.11 , pp. 1-37
    • Gyöngy, I.1
  • 14
    • 18144433566 scopus 로고    scopus 로고
    • On the splitting-up method and stochastic partial differential equations
    • GYÖNGY, I. and KRYLOV, N. (2003). On the splitting-up method and stochastic partial differential equations. Ann. Probab. 31 564-591.
    • (2003) Ann. Probab. , vol.31 , pp. 564-591
    • Gyöngy, I.1    Krylov, N.2
  • 15
    • 0037209607 scopus 로고    scopus 로고
    • Approximation for semilinear stochastic evolution equations
    • HAUSENBLAS, E. (2003). Approximation for semilinear stochastic evolution equations. Potential Anal. 18 141-186.
    • (2003) Potential Anal , vol.18 , pp. 141-186
    • Hausenblas, E.1
  • 16
    • 0002279610 scopus 로고    scopus 로고
    • Exponential integrators for large systems of differential equations
    • HOCHBRUCK, M., LUBICH, C. and SELHOFER, H. (1998). Exponential integrators for large systems of differential equations. SIAM J. Sci. Comput. 19 1552-1574.
    • (1998) SIAM J. Sci. Comput. , vol.19 , pp. 1552-1574
    • Hochbruck, M.1    Lubich, C.2    Selhofer, H.3
  • 17
    • 33646264630 scopus 로고    scopus 로고
    • Explicit exponential Runge-Kutta methods for semilinear parabolic problems
    • HOCHBRUCK, M. and OSTERMANN, A. (2005). Explicit exponential Runge-Kutta methods for semilinear parabolic problems. SIAM J. Numer. Anal. 43 1069-1090.
    • (2005) SIAM J. Numer. Anal. , vol.43 , pp. 1069-1090
    • Hochbruck, M.1    Ostermann, A.2
  • 18
    • 14844318087 scopus 로고    scopus 로고
    • Exponential Runge-Kutta methods for parabolic problems
    • HOCHBRUCK, M. and OSTERMANN, A. (2005). Exponential Runge-Kutta methods for parabolic problems. Appl. Numer. Math. 53 323-339.
    • (2005) Appl. Numer. Math. , vol.53 , pp. 323-339
    • Hochbruck, M.1    Ostermann, A.2
  • 22
    • 70350393847 scopus 로고    scopus 로고
    • Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients
    • JENTZEN, A. (2009). Pathwise numerical approximations of SPDEs with additive noise under non-global Lipschitz coefficients. Potential Anal. 4 375-404.
    • (2009) Potential Anal , vol.4 , pp. 375-404
    • Jentzen, A.1
  • 23
    • 61849107033 scopus 로고    scopus 로고
    • Pathwise Taylor schemes for random ordinary differential equations
    • JENTZEN, A. and KLOEDEN, P. E. (2009). Pathwise Taylor schemes for random ordinary differential equations. BIT 49 113-140.
    • (2009) BIT , vol.49 , pp. 113-140
    • Jentzen, A.1    Kloeden, P.E.2
  • 24
    • 58149125901 scopus 로고    scopus 로고
    • Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise
    • JENTZEN, A. and KLOEDEN, P. E. (2009). Overcoming the order barrier in the numerical approximation of stochastic partial differential equations with additive space-time noise. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 465 649-667.
    • (2009) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.465 , pp. 649-667
    • Jentzen, A.1    Kloeden, P.E.2
  • 25
    • 71149088745 scopus 로고    scopus 로고
    • The numerical approximation of stochastic partial differential equations
    • JENTZEN, A. and KLOEDEN, P. E. (2009). The numerical approximation of stochastic partial differential equations. Milan J. Math. 77 205-244.
    • (2009) Milan J. Math. , vol.77 , pp. 205-244
    • Jentzen, A.1    Kloeden, P.E.2
  • 26
    • 84894226734 scopus 로고    scopus 로고
    • Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients
    • JENTZEN, A.,KLOEDEN, P. E. andNEUENKIRCH, A. (2009). Pathwise approximation of stochastic differential equations on domains: Higher order convergence rates without global Lipschitz coefficients. Numer. Math. 112 41-64.
    • (2009) Numer. Math. , vol.112 , pp. 41-64
    • Jentzen, A.1    Kloeden, P.E.2    Neuenkirch, A.3
  • 27
    • 22544474620 scopus 로고    scopus 로고
    • Fourth-order time-stepping for stiff PDEs
    • KASSAM, A.-K. and TREFETHEN, L. N. (2005). Fourth-order time-stepping for stiff PDEs. SIAM J. Sci. Comput. 26 1214-1233.
    • (2005) SIAM J. Sci. Comput. , vol.26 , pp. 1214-1233
    • Kassam, A.-K.1    Trefethen, L.N.2
  • 28
    • 36348939995 scopus 로고    scopus 로고
    • Pathwise convergent higher order numerical schemes for random ordinary differential equations
    • KLOEDEN, P. E. and JENTZEN, A. (2007). Pathwise convergent higher order numerical schemes for random ordinary differential equations. Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 463 2929-2944.
    • (2007) Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. , vol.463 , pp. 2929-2944
    • Kloeden, P.E.1    Jentzen, A.2
  • 30
    • 10844237437 scopus 로고    scopus 로고
    • Generalized integrating factor methods for stiff PDEs
    • KROGSTAD, S. (2005). Generalized integrating factor methods for stiff PDEs. J. Comput. Phys. 203 72-88.
    • (2005) J. Comput. Phys. , vol.203 , pp. 72-88
    • Krogstad, S.1
  • 31
    • 0001202958 scopus 로고
    • Generalized Runge-Kutta processes for stable systems with large Lipschitz constants
    • LAWSON, J. D. (1967). Generalized Runge-Kutta processes for stable systems with large Lipschitz constants. SIAM J. Numer. Anal. 4 372-380.
    • (1967) SIAM J. Numer. Anal. , vol.4 , pp. 372-380
    • Lawson, J.D.1
  • 32
    • 34250182382 scopus 로고    scopus 로고
    • Lower bounds and nonuniform time discretization for approximation of stochastic heat equations
    • MÜLLER-GRONBACH, T. and RITTER, K. (2007). Lower bounds and nonuniform time discretization for approximation of stochastic heat equations. Found. Comput. Math. 7 135-181.
    • (2007) Found. Comput. Math. , vol.7 , pp. 135-181
    • Müller-Gronbach, T.1    Ritter, K.2
  • 33
    • 34250880991 scopus 로고    scopus 로고
    • An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise
    • MÜLLER-GRONBACH, T. and RITTER, K. (2007). An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47 393-418.
    • (2007) BIT , vol.47 , pp. 393-418
    • Müller-Gronbach, T.1    Ritter, K.2
  • 34
    • 56549110155 scopus 로고    scopus 로고
    • Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise
    • Springer, Berlin
    • MÜLLER-GRONBACH, T., RITTER, K. andWAGNER, T. (2008). Optimal pointwise approximation of a linear stochastic heat equation with additive space-time white noise. In Monte Carlo and Quasi-Monte Carlo Methods 2006 577-589. Springer, Berlin.
    • (2008) Monte Carlo and Quasi-Monte Carlo Methods 2006 , pp. 577-589
    • Müller-Gronbach, T.1    Ritter, K.2    Wagner, T.3
  • 36
    • 33745319450 scopus 로고    scopus 로고
    • A class of explicit exponential general linear methods
    • OSTERMANN, A., THALHAMMER, M. andWRIGHT, W. M. (2006). A class of explicit exponential general linear methods. BIT 46 409-431.
    • (2006) BIT , vol.46 , pp. 409-431
    • Ostermann, A.1    Thalhammer, M.2    Wright, W.M.3
  • 39
    • 8344274262 scopus 로고    scopus 로고
    • Stochastic Taylor expansions for the expectation of functionals of diffusion processes
    • RÖSSLER, A. (2004). Stochastic Taylor expansions for the expectation of functionals of diffusion processes. Stoch. Anal. Appl. 22 1553-1576.
    • (2004) Stoch. Anal. Appl. , vol.22 , pp. 1553-1576
    • Rössler, A.1
  • 40
    • 30444461217 scopus 로고    scopus 로고
    • Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations
    • RÖSSLER, A. (2006). Rooted tree analysis for order conditions of stochastic Runge-Kutta methods for the weak approximation of stochastic differential equations. Stoch. Anal. Appl. 24 97-134.
    • (2006) Stoch. Anal. Appl. , vol.24 , pp. 97-134
    • Rössler, A.1
  • 42
    • 0032676044 scopus 로고    scopus 로고
    • Numerical methods for stochastic parabolic PDEs
    • SHARDLOW, T. (1999). Numerical methods for stochastic parabolic PDEs. Numer. Funct. Anal. Optim. 20 121-145.
    • (1999) Numer. Funct. Anal. Optim. , vol.20 , pp. 121-145
    • Shardlow, T.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.