-
1
-
-
77956834067
-
A mathematical model illustrating the theory of turbulence
-
AAMCAY0065-215610.1016/S0065-2156(08)70100-5
-
Burgers J.M. A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 19481:171. AAMCAY0065-215610.1016/S0065-2156(08)70100-5
-
(1948)
Adv. Appl. Mech.
, vol.1
, pp. 171
-
-
Burgers, J.M.1
-
2
-
-
84980078224
-
The partial differential equation ut+uux=μuxx
-
CPMAMV0010-364010.1002/cpa.3160030302
-
Hopf E. The partial differential equation ut+uux=μuxx. Commun. Pure Appl. Math. 19503:201. CPMAMV0010-364010.1002/cpa.3160030302
-
(1950)
Commun. Pure Appl. Math.
, vol.3
, pp. 201
-
-
Hopf, E.1
-
3
-
-
0000332692
-
On a quasi-linear parabolic equation occurring in aerodynamics
-
QAMAAY0033-569X
-
Cole J.D. On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 19519:225. QAMAAY0033-569X
-
(1951)
Q. Appl. Math.
, vol.9
, pp. 225
-
-
Cole, J.D.1
-
4
-
-
0001222722
-
Probability distribution functions of derivatives and increments for decaying Burgers turbulence
-
PLEEE81063-651X10.1103/PhysRevE.61.1395
-
Bec J. Frisch U. Probability distribution functions of derivatives and increments for decaying Burgers turbulence. Phys. Rev. E 200061:1395. PLEEE81063-651X10.1103/PhysRevE.61.1395
-
(2000)
Phys. Rev. E
, vol.61
, pp. 1395
-
-
Bec, J.1
Frisch, U.2
-
5
-
-
0033846265
-
Kicked Burgers turbulence
-
JFLSA70022-112010.1017/S0022112000001051
-
Bec J. Frisch U. Khanin K. Kicked Burgers turbulence. J. Fluid Mech. 2000416:239. JFLSA70022-112010.1017/S0022112000001051
-
(2000)
J. Fluid Mech.
, vol.416
, pp. 239
-
-
Bec, J.1
Frisch, U.2
Khanin, K.3
-
6
-
-
0000711880
-
Kolmogorov turbulence in a random-force-driven Burgers equation
-
PLEEE81063-651X10.1103/PhysRevE.51.R2739
-
Chekhlov A. Yakhot V. Kolmogorov turbulence in a random-force-driven Burgers equation. Phys. Rev. E 199551:R2739. PLEEE81063-651X10.1103/PhysRevE.51.R2739
-
(1995)
Phys. Rev. E
, vol.51
-
-
Chekhlov, A.1
Yakhot, V.2
-
7
-
-
0040951913
-
On the statistical solution of the Riemann equation and its implication on Burgers turbulence
-
PHFLE61070-663110.1063/1.870076
-
E W. Vanden Eijnden E. On the statistical solution of the Riemann equation and its implication on Burgers turbulence. Phys. Fluids 199911:2149. PHFLE61070-663110.1063/1.870076
-
(1999)
Phys. Fluids
, vol.11
, pp. 2149
-
-
E, W.1
Vanden Eijnden, E.2
-
8
-
-
0034082434
-
Another note on forced Burgers turbulence
-
PHFLE61070-663110.1063/1.870288
-
E W. Vanden Eijnden E. Another note on forced Burgers turbulence. Phys. Fluids 200012:149. PHFLE61070-663110.1063/1.870288
-
(2000)
Phys. Fluids
, vol.12
, pp. 149
-
-
E, W.1
Vanden Eijnden, E.2
-
9
-
-
0032209644
-
Steady-state Burgers turbulence with large-scale forcing
-
PHFLE61070-663110.1063/1.869807
-
Gotoh T. Kraichnan R.H. Steady-state Burgers turbulence with large-scale forcing. Phys. Fluids 199810:2859. PHFLE61070-663110.1063/1.869807
-
(1998)
Phys. Fluids
, vol.10
, pp. 2859
-
-
Gotoh, T.1
Kraichnan, R.H.2
-
10
-
-
0242287840
-
Random Burgers equation and Lagrangian system in non-compact domains
-
NONLE50951-771510.1088/0951-7715/16/3/303
-
Hoang V.H. Khanin K. Random Burgers equation and Lagrangian system in non-compact domains. Nonlinearity 200316:819. NONLE50951-771510.1088/0951-7715/16/3/303
-
(2003)
Nonlinearity
, vol.16
, pp. 819
-
-
Hoang, V.H.1
Khanin, K.2
-
11
-
-
0001672917
-
Burgers-equationdevils staircases and the mass-distribution for large-scale structures
-
AAEJAF0004-6361
-
Vergassola M. Dubrulle B. Frisch U. Noullez A. Burgers-equationdevils staircases and the mass-distribution for large-scale structures. Astron. Astrophys. 1994289:325. AAEJAF0004-6361
-
(1994)
Astron. Astrophys.
, vol.289
, pp. 325
-
-
Vergassola, M.1
Dubrulle, B.2
Frisch, U.3
Noullez, A.4
-
12
-
-
6144286981
-
Algebraic tails of probability functions in the random-force-driven Burgers turbulence
-
PRLTAO0031-900710.1103/PhysRevLett.77.3118
-
Yakhot V. Chekhlov A. Algebraic tails of probability functions in the random-force-driven Burgers turbulence. Phys. Rev. Lett. 199677:3118. PRLTAO0031-900710.1103/PhysRevLett.77.3118
-
(1996)
Phys. Rev. Lett.
, vol.77
, pp. 3118
-
-
Yakhot, V.1
Chekhlov, A.2
-
13
-
-
47149117440
-
Wavelets meet Burgulence: CVS-filtered Burgers equation
-
PDNPDT0167-278910.1016/j.physd.2008.02.011
-
Nguyen R.V. Y. Farge M. Kolomensky D. Schneider K. Kingsbury N. Wavelets meet Burgulence: CVS-filtered Burgers equation. Physica D 2008237:2151. PDNPDT0167-278910.1016/j.physd.2008.02.011
-
(2008)
Physica D
, vol.237
, pp. 2151
-
-
Nguyen R.V., Y.1
Farge, M.2
Kolomensky, D.3
Schneider, K.4
Kingsbury, N.5
-
14
-
-
48849101499
-
Constraint on scalar diffusion anomaly in three-dimensional flows having bounded velocity gradients
-
PHFLE61070-663110.1063/1.2957022
-
Tran C.V. Constraint on scalar diffusion anomaly in three-dimensional flows having bounded velocity gradients. Phys. Fluids 200820:077103. PHFLE61070-663110.1063/1.2957022
-
(2008)
Phys. Fluids
, vol.20
, pp. 077103
-
-
Tran, C.V.1
-
16
-
-
49049134700
-
Chaotic attractors of an infinite-dimensional dynamical system
-
PDNPDT0167-278910.1016/0167-2789(82)90042-2
-
Farmer J.D. Chaotic attractors of an infinite-dimensional dynamical system. Physica D 19824:366. PDNPDT0167-278910.1016/0167-2789(82)90042-2
-
(1982)
Physica D
, vol.4
, pp. 366
-
-
Farmer, J.D.1
-
17
-
-
67249103195
-
Number of degrees of freedom of two-dimensional turbulence
-
PLEEE81063-651X10.1103/PhysRevE.79.056308
-
Tran C.V. Blackbourn L. Number of degrees of freedom of two-dimensional turbulence. Phys. Rev. E 200979:056308. PLEEE81063-651X10.1103/PhysRevE.79.056308
-
(2009)
Phys. Rev. E
, vol.79
, pp. 056308
-
-
Tran, C.V.1
Blackbourn, L.2
-
18
-
-
76349087830
-
The number of degrees of freedom of three-dimensional Navier-Stokes turbulence
-
PHFLE61070-663110.1063/1.3276295
-
Tran C.V. The number of degrees of freedom of three-dimensional Navier-Stokes turbulence. Phys. Fluids 200921:125103. PHFLE61070-663110.1063/1.3276295
-
(2009)
Phys. Fluids
, vol.21
, pp. 125103
-
-
Tran, C.V.1
-
19
-
-
75349110947
-
Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence
-
PLEEE81063-651X10.1103/PhysRevE.81.016301
-
Tran C.V. Dritschel D.G. Scott R.K. Effective degrees of nonlinearity in a family of generalized models of two-dimensional turbulence. Phys. Rev. E 201081:016301. PLEEE81063-651X10.1103/PhysRevE.81.016301
-
(2010)
Phys. Rev. E
, vol.81
, pp. 016301
-
-
Tran, C.V.1
Dritschel, D.G.2
Scott, R.K.3
-
20
-
-
12044252828
-
Pattern formation outside of equilibrium
-
RMPHAT0034-686110.1103/RevModPhys.65.851
-
Cross M.C. Hohenberg C. Pattern formation outside of equilibrium. Rev. Mod. Phys. 199365:851. RMPHAT0034-686110.1103/RevModPhys.65.851
-
(1993)
Rev. Mod. Phys.
, vol.65
, pp. 851
-
-
Cross, M.C.1
Hohenberg, C.2
-
21
-
-
0024703013
-
Chaotic behaviour of an extended system
-
PDNPDT0167-278910.1016/0167-2789(89)90121-8
-
Hohenberg C. Shraiman B.I. Chaotic behaviour of an extended system. Physica D 198937:109. PDNPDT0167-278910.1016/0167-2789(89)90121-8
-
(1989)
Physica D
, vol.37
, pp. 109
-
-
Hohenberg, C.1
Shraiman, B.I.2
-
22
-
-
2342567081
-
Extensivity of two-dimensional turbulence
-
PDNPDT0167-278910.1016/j.physd.2004.01.002
-
Tran C.V. Shepherd T.G. Cho H.-R. Extensivity of two-dimensional turbulence. Physica D 2004192:187. PDNPDT0167-278910.1016/j.physd.2004.01.002
-
(2004)
Physica D
, vol.192
, pp. 187
-
-
Tran, C.V.1
Shepherd, T.G.2
Cho, H.-R.3
-
23
-
-
40449132762
-
Revisiting Batchelor's theory of two-dimensional turbulence
-
JFLSA70022-112010.1017/S0022112007008427
-
Dritschel D.G. Tran C.V. Scott R.K. Revisiting Batchelor's theory of two-dimensional turbulence. J. Fluid Mech. 2007591:379. JFLSA70022-112010.1017/S0022112007008427
-
(2007)
J. Fluid Mech.
, vol.591
, pp. 379
-
-
Dritschel, D.G.1
Tran, C.V.2
Scott, R.K.3
|