메뉴 건너뛰기




Volumn 22, Issue 6, 2010, Pages 1399-1444

Reward-modulated Hebbian learning of decision making

Author keywords

[No Author keywords available]

Indexed keywords

ACTION POTENTIAL; ALGORITHM; ARTICLE; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; BAYES THEOREM; BRAIN; COMPUTER SIMULATION; DECISION MAKING; MATHEMATICAL PHENOMENA; NERVE CELL; NERVE CELL NETWORK; PHYSIOLOGY; REWARD; SYNAPTIC TRANSMISSION;

EID: 77953483366     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2010.03-09-980     Document Type: Article
Times cited : (29)

References (66)
  • 1
    • 0033667165 scopus 로고    scopus 로고
    • Synaptic plasticity: Taming the beast
    • Abbott, L. F., & Nelson, S. B. (2000). Synaptic plasticity: Taming the beast. Nature Neuroscience, 3, 1178-1183.
    • (2000) Nature Neuroscience , vol.3 , pp. 1178-1183
    • Abbott, L.F.1    Nelson, S.B.2
  • 2
    • 42349089481 scopus 로고    scopus 로고
    • Metaplasiticity: Tuning synapses and networks for plasticity
    • Abraham,W. C. (2008). Metaplasiticity: Tuning synapses and networks for plasticity. Nature Reviews Neuroscience, 9, 387-399.
    • (2008) Nature Reviews Neuroscience , vol.9 , pp. 387-399
    • Abraham, W.C.1
  • 5
    • 0036568025 scopus 로고    scopus 로고
    • Finite time analysis of the multi-armed bandit problem
    • Auer, P., Cesa-Bianchi,N.,&Fischer, P. (2002). Finite time analysis of the multi-armed bandit problem. Machine Learning, 47(2/3), 235-256.
    • (2002) Machine Learning , vol.47 , Issue.2-3 , pp. 235-256
    • Auer, P.1    Cesa-Bianchi, N.2    Fischer, P.3
  • 6
    • 73549103329 scopus 로고    scopus 로고
    • Near-optimal regret bounds for reinforcement learning
    • D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.) Cambridge, MA: MIT Press
    • Auer, P., Jaksch, T.,&Ortner, R. (2009). Near-optimal regret bounds for reinforcement learning. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21 (pp. 89-96). Cambridge, MA: MIT Press.
    • (2009) Advances in neural information processing systems , vol.21 , pp. 89-96
    • Auer, P.1    Jaksch, T.2    Ortner, R.3
  • 10
    • 48249085332 scopus 로고    scopus 로고
    • Spike timing-dependent plasticity: A Hebbian learning rule
    • Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A Hebbian learning rule. Annu Rev Neuroscience, 31, 25-46.
    • (2008) Annu Rev Neuroscience , vol.31 , pp. 25-46
    • Caporale, N.1    Dan, Y.2
  • 13
    • 84898964259 scopus 로고    scopus 로고
    • Explaining away in weight space
    • T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.) Cambridge, MA: MIT Press
    • Dayan, P., & Kakade, S. (2001). Explaining away in weight space. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 451-457). Cambridge, MA: MIT Press.
    • (2001) Advances in neural information processing systems , vol.13 , pp. 451-457
    • Dayan, P.1    Kakade, S.2
  • 14
    • 0042467409 scopus 로고    scopus 로고
    • Uncertainty and learning
    • Dayan, P., & Yu, A. (2003). Uncertainty and learning. IETE Journal of Research, 49, 171-182.
    • (2003) IETE Journal of Research , vol.49 , pp. 171-182
    • Dayan, P.1    Yu, A.2
  • 15
    • 37749042762 scopus 로고    scopus 로고
    • Bayesian spiking neurons I: Inference
    • Deneve, S. (2008). Bayesian spiking neurons I: Inference. Neural Computation, 20(1), 91-117.
    • (2008) Neural Computation , vol.20 , Issue.1 , pp. 91-117
    • Deneve, S.1
  • 16
    • 0031269184 scopus 로고    scopus 로고
    • On the optimality of the simple Bayesian classifier under zero-one loss
    • Domingos, P., & Pazzani, M. (1997). On the optimality of the simple Bayesian classifier under zero-one loss. Machine Learning, 275(29), 103-130.
    • (1997) Machine Learning , vol.275 , Issue.29 , pp. 103-130
    • Domingos, P.1    Pazzani, M.2
  • 17
    • 3943088427 scopus 로고    scopus 로고
    • Neuronal circuits of the neocortex
    • Douglas, R. J., & Martin, K. A. (2004). Neuronal circuits of the neocortex. Annu. Rev. Neurosci., 27, 419-451.
    • (2004) Annu. Rev. Neurosci. , vol.27 , pp. 419-451
    • Douglas, R.J.1    Martin, K.A.2
  • 18
    • 0036592023 scopus 로고    scopus 로고
    • Metalearning and neuromodulation
    • Doya, K. (2002). Metalearning and neuromodulation. Neural Networks, 15, 495-506.
    • (2002) Neural Networks , vol.15 , pp. 495-506
    • Doya, K.1
  • 19
    • 0033349954 scopus 로고    scopus 로고
    • Multihypothesis sequential probability ratio tests-Part I: Asymptotic optimality
    • Dragalin, V., Tartakovsky, A., & Veeravalli, V. (1999). Multihypothesis sequential probability ratio tests-Part I: Asymptotic optimality. IEEE Transactions on Information Theory, 45(7), 2448-2461.
    • (1999) IEEE Transactions on Information Theory , vol.45 , Issue.7 , pp. 2448-2461
    • Dragalin, V.1    Tartakovsky, A.2    Veeravalli, V.3
  • 20
    • 37549060355 scopus 로고    scopus 로고
    • Reinforcement learning with modulated spike timing-dependent synaptic plasticity
    • Farries,M.A.,&Fairhall, A. L. (2007). Reinforcement learning with modulated spike timing-dependent synaptic plasticity. Journal of Neurophysiology, 98, 3648-3665.
    • (2007) Journal of Neurophysiology , vol.98 , pp. 3648-3665
    • Farries, M.A.1    Fairhall, A.L.2
  • 21
    • 25144434661 scopus 로고    scopus 로고
    • Hebbian synaptic plasticity
    • M. A. Arbib (Ed.) Cambridge, MA: MIT Press
    • Frégnac, Y. (2003). Hebbian synaptic plasticity. In M. A. Arbib (Ed.), The handbook of brain theory and neural networks (pp. 515-522). Cambridge, MA: MIT Press.
    • (2003) The handbook of brain theory and neural networks , pp. 515-522
    • Frégnac, Y.1
  • 22
    • 0023034513 scopus 로고
    • Neuronal population coding of movement direction
    • Georgopoulos, A. P., Schwartz, A. P., & Kettner, R. E. (1986). Neuronal population coding of movement direction. Science, 233, 1416-1419.
    • (1986) Science , vol.233 , pp. 1416-1419
    • Georgopoulos, A.P.1    Schwartz, A.P.2    Kettner, R.E.3
  • 23
    • 0000169010 scopus 로고
    • Bandit processes and dynamic allocation indices
    • Gittins, J. (1979). Bandit processes and dynamic allocation indices. Journal of the Royal Statistical Society, 41, 148-177.
    • (1979) Journal of the Royal Statistical Society , vol.41 , pp. 148-177
    • Gittins, J.1
  • 24
    • 34347361793 scopus 로고    scopus 로고
    • The neural basis of decision making
    • Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annu. Rev. Neuroscience, 30, 535-574.
    • (2007) Annu. Rev. Neuroscience , vol.30 , pp. 535-574
    • Gold, J.I.1    Shadlen, M.N.2
  • 25
    • 28144442965 scopus 로고    scopus 로고
    • Structure and strength in causal induction
    • Griffiths, T., & Tenenbaum, J. (2005). Structure and strength in causal induction. Cognitive Psychology, 51, 334-384.
    • (2005) Cognitive Psychology , vol.51 , pp. 334-384
    • Griffiths, T.1    Tenenbaum, J.2
  • 26
    • 33847145317 scopus 로고    scopus 로고
    • The basal ganglia and cortex implement optimal decision making between alternative actions
    • Gurney, K., & Bogacz, R. (2006). The basal ganglia and cortex implement optimal decision making between alternative actions. Neural Computation, 19, 442-477.
    • (2006) Neural Computation , vol.19 , pp. 442-477
    • Gurney, K.1    Bogacz, R.2
  • 27
    • 0034702306 scopus 로고    scopus 로고
    • Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit
    • Hahnloser, R. H. R., Sarpeshkar, R., Mahowald, M. A., Douglas, R. J., & Seung, H. S. (2000). Digital selection and analogue amplification coexist in a cortex-inspired silicon circuit. Nature, 405, 947-951.
    • (2000) Nature , vol.405 , pp. 947-951
    • Hahnloser, R.H.R.1    Sarpeshkar, R.2    Mahowald, M.A.3    Douglas, R.J.4    Seung, H.S.5
  • 31
    • 0012257655 scopus 로고    scopus 로고
    • Near-optimal performance for reinforcement learning in polynomial time
    • San Francisco: Morgan Kaufmann
    • Kearns,M.,&Singh, S. (1998). Near-optimal performance for reinforcement learning in polynomial time. In Proc. of the 15th International Conference on Machine Learning (ICML) (pp. 260-268). San Francisco: Morgan Kaufmann.
    • (1998) Proc. of the 15th International Conference on Machine Learning (ICML) , pp. 260-268
    • Kearns, M.1    Singh, S.2
  • 32
    • 0024363909 scopus 로고    scopus 로고
    • Bayesian neural networks
    • Kononenko, I. (1998). Bayesian neural networks. Biol. Cybernetics, 61, 361-370.
    • (1998) Biol. Cybernetics , vol.61 , pp. 361-370
    • Kononenko, I.1
  • 34
    • 0002899547 scopus 로고
    • Asymptotically efficient adaptive allocation rules
    • Lai, T., & Robbins, H. (1985). Asymptotically efficient adaptive allocation rules. Advances in Applied Mathematics, 6, 4-22.
    • (1985) Advances in Applied Mathematics , vol.6 , pp. 4-22
    • Lai, T.1    Robbins, H.2
  • 35
    • 0002037186 scopus 로고    scopus 로고
    • A one-layer feedback artificial neural network with a Bayesian learning rule
    • Lansner, A., & Ekeberg, O. (1998). A one-layer feedback artificial neural network with a Bayesian learning rule. International Journal of Neural Systems, 1, 77-87.
    • (1998) International Journal of Neural Systems , vol.1 , pp. 77-87
    • Lansner, A.1    Ekeberg, O.2
  • 36
    • 0030135411 scopus 로고    scopus 로고
    • A higher order Bayesian neural networkwith spiking units
    • Lansner, A.,&Holst, A. (1996). A higher order Bayesian neural networkwith spiking units. International Journal of Neural Systems, 7(2), 115-128.
    • (1996) International Journal of Neural Systems , vol.7 , Issue.2 , pp. 115-128
    • Lansner, A.1    Holst, A.2
  • 37
    • 55449121121 scopus 로고    scopus 로고
    • A learning theory for rewardmodulated spike-timing-dependent plasticity with application to biofeedback
    • Legenstein, R., Pecevski, D., & Maass, W. (2008). A learning theory for rewardmodulated spike-timing-dependent plasticity with application to biofeedback. PLoS Computational Biology, 4(10), 1-27.
    • (2008) PLoS Computational Biology , vol.4 , Issue.10 , pp. 1-27
    • Legenstein, R.1    Pecevski, D.2    Maass, W.3
  • 38
    • 0032094219 scopus 로고    scopus 로고
    • Contraction analysis for nonlinear systems
    • Lohmiller, W., & Slotine, J. J. (1998). Contraction analysis for nonlinear systems. Automatica, 34(6), 683-696.
    • (1998) Automatica , vol.34 , Issue.6 , pp. 683-696
    • Lohmiller, W.1    Slotine, J.J.2
  • 39
    • 0034321873 scopus 로고    scopus 로고
    • On the computational power of winner-take-all
    • Maass, W. (2000). On the computational power of winner-take-all. Neural Computation, 12(11), 2519-2536.
    • (2000) Neural Computation , vol.12 , Issue.11 , pp. 2519-2536
    • Maass, W.1
  • 40
    • 0028972278 scopus 로고
    • Bee foraging in uncertain environments using predictive Hebbian learning
    • Montague, P., Dayan, P., Person, C., & Sejnowski, T. (1995). Bee foraging in uncertain environments using predictive Hebbian learning. Nature, 377, 725-728.
    • (1995) Nature , vol.377 , pp. 725-728
    • Montague, P.1    Dayan, P.2    Person, C.3    Sejnowski, T.4
  • 42
    • 85162005860 scopus 로고    scopus 로고
    • Contraction properties of VLSI cooperative competitive neural networks of spiking neurons
    • J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.) Cambridge, MA: MIT Press
    • Neftci, E., Chicca, E., Indiveri, G., Slotine, J., & Douglas, R. (2008). Contraction properties of VLSI cooperative competitive neural networks of spiking neurons. In J. C. Platt, D. Koller, Y. Singer, & S. Roweis (Eds.), Advances in neural information processing systems, 20. Cambridge, MA: MIT Press.
    • (2008) Advances in neural information processing systems , vol.20
    • Neftci, E.1    Chicca, E.2    Indiveri, G.3    Slotine, J.4    Douglas, R.5
  • 43
    • 84858775111 scopus 로고    scopus 로고
    • Hebbian learning of Bayes optimal decisions
    • D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.) Cambridge, MA: MIT Press
    • Nessler, B., Pfeiffer, M., & Maass, W. (2009). Hebbian learning of Bayes optimal decisions. In D. Koller, D. Schuurmans, Y. Bengio, & L. Bottou (Eds.), Advances in neural information processing systems, 21. Cambridge, MA: MIT Press.
    • (2009) Advances in neural information processing systems , vol.21
    • Nessler, B.1    Pfeiffer, M.2    Maass, W.3
  • 45
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen, B. A., & Field, D. J. (1996). Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 381, 607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 46
  • 47
    • 44949127494 scopus 로고    scopus 로고
    • Neural models of Bayesian belief propagation
    • K. Doya, S. Ishii, A. Pouget, & R. P. N. Rao (Eds.) Cambridge, MA: MIT Press
    • Rao, R. P. N. (2007). Neural models of Bayesian belief propagation. In K. Doya, S. Ishii, A. Pouget, & R. P. N. Rao (Eds.), Bayesian brain (pp. 239-267). Cambridge, MA: MIT Press.
    • (2007) Bayesian brain , pp. 239-267
    • Rao, R.P.N.1
  • 49
    • 0035817882 scopus 로고    scopus 로고
    • A cellular mechanism of reward-related learning
    • Reynolds, J. N., Hyland, B. I., & Wickens, J. R. (2001). A cellular mechanism of reward-related learning. Nature, 413, 67-70.
    • (2001) Nature , vol.413 , pp. 67-70
    • Reynolds, J.N.1    Hyland, B.I.2    Wickens, J.R.3
  • 52
    • 33749050766 scopus 로고    scopus 로고
    • Computational algorithms and neuronal network models underlying decision processes
    • Sakai, Y., Okamoto, H., & Fukai, T. (2006). Computational algorithms and neuronal network models underlying decision processes. Neural Networks, 19(8), 1091-1105.
    • (2006) Neural Networks , vol.19 , Issue.8 , pp. 1091-1105
    • Sakai, Y.1    Okamoto, H.2    Fukai, T.3
  • 54
    • 0030896968 scopus 로고    scopus 로고
    • A neural substrate of prediction and reward
    • Schultz, W., Dayan, P., & Montague, P. (1997). A neural substrate of prediction and reward. Science, 275, 1593-1599.
    • (1997) Science , vol.275 , pp. 1593-1599
    • Schultz, W.1    Dayan, P.2    Montague, P.3
  • 55
    • 70349235964 scopus 로고    scopus 로고
    • Belief-propagation in networks of spiking neurons
    • Steimer, A., Maass, W., & Douglas, R. (2009). Belief-propagation in networks of spiking neurons. Neural Computation, 21, 2502-2523.
    • (2009) Neural Computation , vol.21 , pp. 2502-2523
    • Steimer, A.1    Maass, W.2    Douglas, R.3
  • 56
    • 2942726234 scopus 로고    scopus 로고
    • Matching behavior and the representation of value in the parietal cortex
    • Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004). Matching behavior and the representation of value in the parietal cortex. Science, 304, 1782-1787.
    • (2004) Science , vol.304 , pp. 1782-1787
    • Sugrue, L.P.1    Corrado, G.S.2    Newsome, W.T.3
  • 57
    • 17844396920 scopus 로고    scopus 로고
    • Choosing the greater of two goods: Neural currencies for valuation and decision making
    • Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005). Choosing the greater of two goods: Neural currencies for valuation and decision making. Nature Reviews Neuroscience, 6(5), 363-375.
    • (2005) Nature Reviews Neuroscience , vol.6 , Issue.5 , pp. 363-375
    • Sugrue, L.P.1    Corrado, G.S.2    Newsome, W.T.3
  • 60
    • 84864058399 scopus 로고    scopus 로고
    • Goal-based imitation as probabilistic inference over graphical models
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds.) Cambridge, MA: MIT Press
    • Verma, D., & Rao, R. (2006). Goal-based imitation as probabilistic inference over graphical models. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1393-1400). Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 1393-1400
    • Verma, D.1    Rao, R.2
  • 61
    • 0000193326 scopus 로고
    • Optimal character of the sequential probability ratio test
    • Wald, A., & Wolfowitz, J. (1948). Optimal character of the sequential probability ratio test. Ann. Math. Statist., 19, 326-339.
    • (1948) Ann. Math. Statist. , vol.19 , pp. 326-339
    • Wald, A.1    Wolfowitz, J.2
  • 62
    • 0037028039 scopus 로고    scopus 로고
    • Probabilistic decision making by slow reverberation in cortical circuits
    • Wang, X. J. (2002). Probabilistic decision making by slow reverberation in cortical circuits. Neuron, 36, 955-968.
    • (2002) Neuron , vol.36 , pp. 955-968
    • Wang, X.J.1
  • 63
    • 34347347169 scopus 로고    scopus 로고
    • Probabilistic reasoning by neurons
    • Yang, T., & Shadlen, M. N. (2007). Probabilistic reasoning by neurons. Nature, 447, 1075-1080.
    • (2007) Nature , vol.447 , pp. 1075-1080
    • Yang, T.1    Shadlen, M.N.2
  • 64
    • 84899013064 scopus 로고    scopus 로고
    • Expected and unexpected uncertainty: ACh and NE in the neocortex
    • S. Becker, S. Thrün, & K. Obermayer (Eds.) Cambridge, MA: MIT Press
    • Yu, A., & Dayan, P. (2003). Expected and unexpected uncertainty: ACh and NE in the neocortex. In S. Becker, S. Thrün, & K. Obermayer (Eds.), Advances in neural information processing systems, 15 (pp. 157-164). Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.15 , pp. 157-164
    • Yu, A.1    Dayan, P.2
  • 65
    • 56349122310 scopus 로고    scopus 로고
    • Augmented Rescorla-Wagner and maximum likelihood estimation
    • Y. Weiss, B. Schölkopf, & J. Platt (Eds.) Cambridge, MA: MIT Press
    • Yuille, A. L. (2006). Augmented Rescorla-Wagner and maximum likelihood estimation. In Y. Weiss, B. Schölkopf, & J. Platt (Eds.), Advances in neural information processing systems, 18 (pp. 1561-1568). Cambridge, MA: MIT Press.
    • (2006) Advances in neural information processing systems , vol.18 , pp. 1561-1568
    • Yuille, A.L.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.