-
1
-
-
0003692793
-
-
in Lecture Notes in Physics, Vol. Springer, Berlin, 10.1007/3-540-13392- 5-1;
-
O. Bohigas and M.-J. Giannoni, in Mathematical and Computational Methods in Nuclear Physics, Lecture Notes in Physics, Vol. 209 (Springer, Berlin, 1984) 10.1007/3-540-13392-5-1
-
(1984)
Mathematical and Computational Methods in Nuclear Physics
, vol.209
-
-
Bohigas, O.1
Giannoni, M.-J.2
-
7
-
-
77953328039
-
-
A requirement for the applicability of random-matrix theory is that the system possess no geometric symmetry.
-
A requirement for the applicability of random-matrix theory is that the system possess no geometric symmetry.
-
-
-
-
8
-
-
0004207885
-
-
Cambridge University Press, Cambridge, England 10.1017/CBO9780511524622;
-
H. J. Stöckmann, Quantum Chaos: An Introduction (Cambridge University Press, Cambridge, England, 1999) 10.1017/CBO9780511524622
-
(1999)
Quantum Chaos: An Introduction
-
-
Stöckmann, H.J.1
-
9
-
-
3142730527
-
-
10.1103/PhysRevLett.74.2666;
-
U. Stoffregen, J. Stein, H.-J. Stöckmann, M. Kuś, and F. Haake, Phys. Rev. Lett. 74, 2666 (1995) 10.1103/PhysRevLett.74.2666
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2666
-
-
Stoffregen, U.1
Stein, J.2
Stöckmann, H.-J.3
Kuś, M.4
Haake, F.5
-
10
-
-
0000344544
-
-
10.1103/PhysRevLett.74.2662
-
P. So, S. M. Anlage, E. Ott, and R. N. Oerter, Phys. Rev. Lett. 74, 2662 (1995). 10.1103/PhysRevLett.74.2662
-
(1995)
Phys. Rev. Lett.
, vol.74
, pp. 2662
-
-
So, P.1
Anlage, S.M.2
Ott, E.3
Oerter, R.N.4
-
12
-
-
33846622037
-
-
Neutrinos have a minuscule, but nonzero mass. See, 10.1103/PhysRevD.75. 013011
-
Neutrinos have a minuscule, but nonzero mass. See G. Karagiorgi, Phys. Rev. D 75, 013011 (2007). 10.1103/PhysRevD.75.013011
-
(2007)
Phys. Rev. D
, vol.75
, pp. 013011
-
-
Karagiorgi, G.1
-
13
-
-
7444220645
-
-
10.1126/science.1102896
-
K. S. Novoselov, Science 306, 666 (2004). 10.1126/science.1102896
-
(2004)
Science
, vol.306
, pp. 666
-
-
Novoselov, K.S.1
-
14
-
-
34548672547
-
-
10.1126/science.1144359
-
F. Miao, Science 317, 1530 (2007). 10.1126/science.1144359
-
(2007)
Science
, vol.317
, pp. 1530
-
-
Miao, F.1
-
15
-
-
42349100001
-
-
10.1126/science.1154663
-
L. A. Ponomarenko, Science 320, 356 (2008). 10.1126/science.1154663
-
(2008)
Science
, vol.320
, pp. 356
-
-
Ponomarenko, L.A.1
-
18
-
-
0037164991
-
-
10.1103/PhysRevLett.89.266603;
-
H. Suzuura and T. Ando, Phys. Rev. Lett. 89, 266603 (2002) 10.1103/PhysRevLett.89.266603
-
(2002)
Phys. Rev. Lett.
, vol.89
, pp. 266603
-
-
Suzuura, H.1
Ando, T.2
-
19
-
-
56549126981
-
-
10.1103/RevModPhys.80.1337
-
C. W. J. Beenakker, Rev. Mod. Phys. 80, 1337 (2008). 10.1103/RevModPhys. 80.1337
-
(2008)
Rev. Mod. Phys.
, vol.80
, pp. 1337
-
-
Beenakker, C.W.J.1
-
20
-
-
77953340803
-
-
′, will modify the band structure. But the linear dispersion relation still holds near the Dirac points. Thus the same statistics persist for energy levels close to the Dirac points. This has been validated by direct numeric calculations.
-
′, will modify the band structure. But the linear dispersion relation still holds near the Dirac points. Thus the same statistics persist for energy levels close to the Dirac points. This has been validated by direct numeric calculations.
-
-
-
-
21
-
-
59949098337
-
-
10.1103/RevModPhys.81.109
-
A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, Rev. Mod. Phys. 81, 109 (2009). 10.1103/RevModPhys.81.109
-
(2009)
Rev. Mod. Phys.
, vol.81
, pp. 109
-
-
Castro Neto, A.H.1
Guinea, F.2
Peres, N.M.R.3
Novoselov, K.S.4
Geim, A.K.5
-
22
-
-
33947644400
-
-
The hopping energy for the boundary atoms could be 10% larger than inner atoms (see, for example, 10.1103/PhysRevB.75.113406However, this does not change the level-spacing statistics.
-
The hopping energy for the boundary atoms could be 10% larger than inner atoms (see, for example, Z. F. Wang, Phys. Rev. B 75, 113406 (2007). 10.1103/PhysRevB.75.113406
-
(2007)
Phys. Rev. B
, vol.75
, pp. 113406
-
-
Wang, Z.F.1
-
27
-
-
77953332608
-
-
Other orientations have been checked by rotating the graphene lattice to a certain angle then apply the confinement. The number of localized edge states could be different, but the level-spacing statistics are the same.
-
Other orientations have been checked by rotating the graphene lattice to a certain angle then apply the confinement. The number of localized edge states could be different, but the level-spacing statistics are the same.
-
-
-
-
31
-
-
0040437111
-
-
Benjamin, New York
-
A. Bohr and B. R. Mottelson, Nuclear Structure (Benjamin, New York, 1969), Vol. 1, Appendix 2C, pp. 294-301.
-
(1969)
Nuclear Structure
, vol.1
, pp. 294-301
-
-
Bohr, A.1
Mottelson, B.R.2
-
33
-
-
77953346921
-
-
Although an infinite graphene flake has the symplectic symmetry, the billiard system, with the sharp edge cuts, will couple the two valleys at the edge and thus break the symplectic symmetry, rendering the GSE statistics unobservable for such systems.
-
Although an infinite graphene flake has the symplectic symmetry, the billiard system, with the sharp edge cuts, will couple the two valleys at the edge and thus break the symplectic symmetry, rendering the GSE statistics unobservable for such systems.
-
-
-
|