-
5
-
-
0037158992
-
-
JPCBFK, 1089-5647, 10.1021/jp0208687.
-
Torquato S. Stillinger F. J. Phys. Chem. B 2002, 106:8354. JPCBFK, 1089-5647, 10.1021/jp0208687.
-
(2002)
J. Phys. Chem. B
, vol.106
, pp. 8354
-
-
Torquato, S.1
Stillinger, F.2
-
6
-
-
35348834133
-
-
JSTPBS, 0022-4715, 10.1007/s10955-007-9393-y.
-
Kuna T. Lebowitz J.L. Speer E.R. J. Stat. Phys. 2007, 129:417. JSTPBS, 0022-4715, 10.1007/s10955-007-9393-y.
-
(2007)
J. Stat. Phys.
, vol.129
, pp. 417
-
-
Kuna, T.1
Lebowitz, J.L.2
Speer, E.R.3
-
8
-
-
65249123106
-
-
PLEEE8, 1063-651X, 10.1103/PhysRevE.79.031123.
-
Hopkins A.B. Stillinger F.H. Torquato S. Phys. Rev. E 2009, 79:031123. PLEEE8, 1063-651X, 10.1103/PhysRevE.79.031123.
-
(2009)
Phys. Rev. E
, vol.79
, pp. 031123
-
-
Hopkins, A.B.1
Stillinger, F.H.2
Torquato, S.3
-
9
-
-
0037769863
-
-
ANMAAH, 0003-486X, 10.4007/annals.2003.157.689.
-
Cohn H. Elkies N. Ann. Math. 2003, 157:689. ANMAAH, 0003-486X, 10.4007/annals.2003.157.689.
-
(2003)
Ann. Math.
, vol.157
, pp. 689
-
-
Cohn, H.1
Elkies, N.2
-
12
-
-
84856110997
-
-
3.
-
3.
-
-
-
-
13
-
-
84856081516
-
-
max(R) is defined locally in terms of one central sphere, whereas Z(R) in Eq. is defined globally in terms of a probability density, or in the c
-
max(R) is defined locally in terms of one central sphere, whereas Z(R) in Eq. is defined globally in terms of a probability density, or in the case of a finite packing, in terms of an average over all spheres.
-
-
-
-
14
-
-
0001937729
-
-
GEMDAT, 0046-5755, 10.1007/BF01263647.
-
Melissen H. Geom. Dedic. 1994, 50:15. GEMDAT, 0046-5755, 10.1007/BF01263647.
-
(1994)
Geom. Dedic.
, vol.50
, pp. 15
-
-
Melissen, H.1
-
15
-
-
71649112588
-
-
ANMAAH, 0003-486X.
-
Cohn H. Kumar A. Ann. Math. 2009, 170:1003. ANMAAH, 0003-486X.
-
(2009)
Ann. Math.
, vol.170
, pp. 1003
-
-
Cohn, H.1
Kumar, A.2
-
16
-
-
49749124954
-
-
ANMAAH, 0003-486X, 10.4007/annals.2008.168.1.
-
Musin O.R. Ann. Math. 2008, 168:1. ANMAAH, 0003-486X, 10.4007/annals.2008.168.1.
-
(2008)
Ann. Math.
, vol.168
, pp. 1
-
-
Musin, O.R.1
-
18
-
-
84856081519
-
-
S(120)=τ.
-
S(120)=τ.
-
-
-
-
22
-
-
0002897777
-
-
ACMTAV, 0001-5954, 10.1007/BF01902361.
-
Böröczky K. Acta Math. Acad. Sci. Hung. 1978, 32:243. ACMTAV, 0001-5954, 10.1007/BF01902361.
-
(1978)
Acta Math. Acad. Sci. Hung.
, vol.32
, pp. 243
-
-
Böröczky, K.1
-
23
-
-
0035634941
-
-
ACVMAL, 0003-889X, 10.1007/PL00000504.
-
Boyvalenkov P. Danev D. Arch. Math. 2001, 77:360. ACVMAL, 0003-889X, 10.1007/PL00000504.
-
(2001)
Arch. Math.
, vol.77
, pp. 360
-
-
Boyvalenkov, P.1
Danev, D.2
|