-
2
-
-
22044441063
-
-
T. Hales, Ann. Math. 162, 1065 (2005).
-
(2005)
Ann. Math.
, vol.162
, pp. 1065
-
-
Hales, T.1
-
4
-
-
0032123489
-
-
10.1016/S0020-7683(97)00142-X
-
S. Torquato, Int. J. Solids Struct. 35, 2385 (1998); 10.1016/S0020- 7683(97)00142-X
-
(1998)
Int. J. Solids Struct.
, vol.35
, pp. 2385
-
-
Torquato, S.1
-
6
-
-
0004285533
-
-
edited by A. Mehta (Springer-Verlag, New York
-
S. F. Edwards, Granular Matter, edited by, A. Mehta, (Springer-Verlag, New York, 1994).
-
(1994)
Granular Matter
-
-
Edwards, S.F.1
-
8
-
-
33646345340
-
-
10.1016/j.mechmat.2005.06.025
-
T. I. Zohdi, Mech. Mater. 38, 969 (2006). 10.1016/j.mechmat.2005.06.025
-
(2006)
Mech. Mater.
, vol.38
, pp. 969
-
-
Zohdi, T.I.1
-
9
-
-
0010333409
-
-
10.1038/183141a0
-
J. D. Bernal, Nature (London) 183, 141 (1959). 10.1038/183141a0
-
(1959)
Nature (London)
, vol.183
, pp. 141
-
-
Bernal, J.D.1
-
10
-
-
35148867317
-
-
10.1038/188908a0
-
G. D. Scott, Nature (London) 188, 908 (1960). 10.1038/188908a0
-
(1960)
Nature (London)
, vol.188
, pp. 908
-
-
Scott, G.D.1
-
25
-
-
4043141426
-
-
10.1023/B:SOLA.0000033368.00217.de
-
F. Berrilli, D. Del Moror, G. Consolini, E. Pietropaolo, T. L. Duvall, Jr., and A. G. Kosovichev, Sol. Phys. 221, 33 (2004). 10.1023/B:SOLA.0000033368. 00217.de
-
(2004)
Sol. Phys.
, vol.221
, pp. 33
-
-
Berrilli, F.1
Del Moror, D.2
Consolini, G.3
Pietropaolo, E.4
Duvall, Jr.T.L.5
Kosovichev, A.G.6
-
27
-
-
11444261745
-
-
10.1143/PTP.25.579
-
M. Yamada, Prog. Theor. Phys. 25, 579 (1961). 10.1143/PTP.25.579
-
(1961)
Prog. Theor. Phys.
, vol.25
, pp. 579
-
-
Yamada, M.1
-
32
-
-
65249104695
-
-
The requirement for smoothness fast contact can be expressed mathematically by stating that g2 (r) is a Cn function with n≥1 or that at least its first derivative exists for r>1.
-
The requirement for smoothness fast contact can be expressed mathematically by stating that g2 (r) is a Cn function with n≥1 or that at least its first derivative exists for r>1.
-
-
-
-
34
-
-
0001794073
-
-
10.2307/3610264
-
J. Leech, Math. Gaz. 40, 22 (1956). 10.2307/3610264
-
(1956)
Math. Gaz.
, vol.40
, pp. 22
-
-
Leech, J.1
-
35
-
-
65249145565
-
-
A cluster is a group of contacting particles in which there is a connected path lying inside all of the particles of the group that never enters the space exterior to the particles.
-
A cluster is a group of contacting particles in which there is a connected path lying inside all of the particles of the group that never enters the space exterior to the particles.
-
-
-
-
39
-
-
65249148261
-
-
A radial function f (r) on R in dimension d depends only on the radial distance r= |r|, where r is the vector position in Rd.
-
A radial function f (r) on R in dimension d depends only on the radial distance r= |r|, where r is the vector position in Rd.
-
-
-
-
41
-
-
36248948359
-
-
10.1038/029186a0
-
W. Barlow, Nature (London) 29, 186 (1883). 10.1038/029186a0
-
(1883)
Nature (London)
, vol.29
, pp. 186
-
-
Barlow, W.1
-
42
-
-
65249132791
-
-
The Barlow packings include all permutations of the stackings of three specific planes of spheres, A, B, and C, where none of the three stackings is adjacent to its like (no AA, BB, and CC), of which fcc and hcp are special cases, stacked ABCABC... and ABAB..., respectively.
-
The Barlow packings include all permutations of the stackings of three specific planes of spheres, A, B, and C, where none of the three stackings is adjacent to its like (no AA, BB, and CC), of which fcc and hcp are special cases, stacked ABCABC... and ABAB..., respectively.
-
-
-
-
43
-
-
0001974409
-
-
10.1103/PhysRev.155.88
-
L. Reatto and G. V. Chester, Phys. Rev. 155, 88 (1967). 10.1103/PhysRev.155.88
-
(1967)
Phys. Rev.
, vol.155
, pp. 88
-
-
Reatto, L.1
Chester, G.V.2
-
45
-
-
35949043259
-
-
10.1103/PhysRevD.1.2726
-
E. R. Harrison, Phys. Rev. D 1, 2726 (1970). 10.1103/PhysRevD.1.2726
-
(1970)
Phys. Rev. D
, vol.1
, pp. 2726
-
-
Harrison, E.R.1
-
50
-
-
65249176978
-
-
H. Cohn, A. Kumar, and S. Torquato (unpublished). If α is assumed to be 1.05, then the packing fraction upper bound improves to about 0.771. If α=1.1 instead, then the bound improves to 0.764.
-
-
-
Cohn, H.1
Kumar, A.2
Torquato, S.3
-
51
-
-
37649027693
-
-
10.1103/PhysRevE.65.031304
-
L. E. Silbert, D. Ertas, G. S. Grest, T. C. Halsey, and D. Levine, Phys. Rev. E 65, 031304 (2002). 10.1103/PhysRevE.65.031304
-
(2002)
Phys. Rev. e
, vol.65
, pp. 031304
-
-
Silbert, L.E.1
Ertas, D.2
Grest, G.S.3
Halsey, T.C.4
Levine, D.5
|