메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1314-1321

Automatic configuration of spectral dimensionality reduction methods for 3D human pose estimation

Author keywords

[No Author keywords available]

Indexed keywords

3D HUMAN POSE ESTIMATION; ASSESSMENT METRICS; AUTOMATIC CONFIGURATION; DATA PROJECTION; DIMENSIONALITY REDUCTION; DIMENSIONALITY REDUCTION METHOD; GENERALIZATION PROPERTIES; MAPPING FUNCTIONS; MUTUAL INFORMATIONS;

EID: 77953219749     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICCVW.2009.5457457     Document Type: Conference Paper
Times cited : (2)

References (32)
  • 1
    • 34047148915 scopus 로고    scopus 로고
    • Nonlinear manifold learning for dynamic shape and dynamic appearance
    • A. Elgammal, C-S. Lee. Nonlinear manifold learning for dynamic shape and dynamic appearance. CVIU. 2007, Vol. 106.
    • (2007) CVIU , vol.106
    • Elgammal, A.1    Lee, C.-S.2
  • 2
    • 77953212272 scopus 로고    scopus 로고
    • Gaussian process latent variable models for human pose estimation
    • N.D. Lawrence, C.H. Ek, H.S. Torr. Gaussian process latent variable models for human pose estimation. MLMI. 2007.
    • (2007) MLMI
    • Lawrence, N.D.1    Ek, C.H.2    Torr, H.S.3
  • 3
    • 69249214474 scopus 로고    scopus 로고
    • Evaluating Example-based Pose Estimation: Experiments on the HumanEva sets
    • R. Poppe. Evaluating Example-based Pose Estimation: Experiments on the HumanEva sets. CVPR. 2007.
    • (2007) CVPR
    • Poppe, R.1
  • 4
    • 77953225257 scopus 로고    scopus 로고
    • Exploiting Human Bipedal Motion Constraints for 3D Pose Recovery from a Single Uncalibrated Camera
    • P. Kuo, A. Thibault, M. Lewandowski, D. Makris, J.-C. Nebel. Exploiting Human Bipedal Motion Constraints for 3D Pose Recovery from a Single Uncalibrated Camera. ISVC. 2009.
    • (2009) ISVC
    • Kuo, P.1    Thibault, A.2    Lewandowski, M.3    Makris, D.4    Nebel, J.-C.5
  • 5
    • 84898429318 scopus 로고    scopus 로고
    • A Model-Based Approach for Estimating Human 3D Poses in Static Images
    • M.W. Lee, I. Cohen. A Model-Based Approach for Estimating Human 3D Poses in Static Images. IEEE TPAMI. 2006.
    • (2006) IEEE TPAMI
    • Lee, M.W.1    Cohen, I.2
  • 6
    • 34547989667 scopus 로고    scopus 로고
    • Real-Time Markerless Human Body Tracking with Multi-View 3-D Voxel Reconstruction
    • F. Caillette, T. Howard. Real-Time Markerless Human Body Tracking with Multi-View 3-D Voxel Reconstruction. In Proc. BMVC. 2004.
    • Proc. BMVC. 2004
    • Caillette, F.1    Howard, T.2
  • 8
    • 0033719704 scopus 로고    scopus 로고
    • Reconstruction of Articulated Objects from Point correspondences in a Single Uncalibrated Image
    • C.J. Taylor. Reconstruction of Articulated Objects from Point correspondences in a Single Uncalibrated Image. CVPR. 2000.
    • (2000) CVPR
    • Taylor, C.J.1
  • 9
    • 50649099636 scopus 로고    scopus 로고
    • Real-time Body Tracking Using a Gaussian Process Latent Variable Model
    • S. Hou, A. Galata, F. Caillette, N. Thacker, P. Bromiley. Real-time Body Tracking Using a Gaussian Process Latent Variable Model. ICCV. 2007.
    • (2007) ICCV
    • Hou, S.1    Galata, A.2    Caillette, F.3    Thacker, N.4    Bromiley, P.5
  • 11
    • 0025490985 scopus 로고
    • Networks for Approximation and Learning
    • T. Poggio, F. Girosi. Networks for Approximation and Learning. Proc. IEEE. 78, 1990, Vol. 9.
    • (1990) Proc. IEEE. , vol.9 , pp. 78
    • Poggio, T.1    Girosi, F.2
  • 12
    • 33746400692 scopus 로고    scopus 로고
    • Recovering 3d Human Body Configurations Using Shape Contexts
    • G. Mori, J. Malki. Recovering 3d Human Body Configurations Using Shape Contexts. TPAMI. 2006, vol. 28.
    • (2006) TPAMI , vol.28
    • Mori, G.1    Malki, J.2
  • 13
    • 77953177061 scopus 로고    scopus 로고
    • 3D Skeleton-Based Body Pose Recovery
    • C. Menier, E. Boyer, B. Raffin. 3D Skeleton-Based Body Pose Recovery. 3DPVT. 2004.
    • (2004) 3DPVT
    • Menier, C.1    Boyer, E.2    Raffin, B.3
  • 15
    • 0034704222 scopus 로고    scopus 로고
    • Nonlinear dimensionality reduction by locally linear embedding
    • L.K. Saul, S.T. Roweis. Nonlinear dimensionality reduction by locally linear embedding. Science. 2000.
    • (2000) Science
    • Saul, L.K.1    Roweis, S.T.2
  • 16
    • 0034704229 scopus 로고    scopus 로고
    • Global Geometric Framework for Nonlinear dimensionality reduction
    • J.B. Tenenbaum. Global Geometric Framework for Nonlinear dimensionality reduction. Science. 290, 2000.
    • (2000) Science , vol.290
    • Tenenbaum, J.B.1
  • 17
    • 0042378381 scopus 로고    scopus 로고
    • Laplacian Eigenmaps for Dimensionality Reduction and Data Representation
    • M. Belkin, P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation. 2003.
    • (2003) Neural Computation
    • Belkin, M.1    Niyogi, P.2
  • 18
    • 78649400333 scopus 로고    scopus 로고
    • Maximum Likelihood Estimation of Intrinsic Dimension
    • E. Levina, P.J. Bickel. Maximum Likelihood Estimation of Intrinsic Dimension. NIPS. 2005.
    • (2005) NIPS
    • Levina, E.1    Bickel, P.J.2
  • 19
    • 85156237082 scopus 로고    scopus 로고
    • Intrinsic Dimension Estimation Using Packing
    • B. Kegl. Intrinsic Dimension Estimation Using Packing. NIPS. 2002.
    • (2002) NIPS
    • Kegl, B.1
  • 20
    • 3543131272 scopus 로고    scopus 로고
    • Geodesic Entropic Graphs for Dimension and Entropy Estimation in Manifold Learning
    • J.A. Costa, A.O. Hero. Geodesic Entropic Graphs for Dimension and Entropy Estimation in Manifold Learning. IEEE TSP. 2004.
    • (2004) IEEE TSP
    • Costa, J.A.1    Hero, A.O.2
  • 21
    • 11144348146 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the locally linear embedding algorithm
    • O. Kouropteva, O. Okun, M. Pietikainen. Selection of the optimal parameter value for the locally linear embedding algorithm. FSKD. 2002.
    • (2002) FSKD
    • Kouropteva, O.1    Okun, O.2    Pietikainen, M.3
  • 22
    • 33646162415 scopus 로고    scopus 로고
    • Selection of the optimal parameter value for the Isomap algorithm
    • O. Samko, A.D. Marshall, P.L. Rosin. Selection of the optimal parameter value for the Isomap algorithm. PRL. 27, 2006, Vol. 9.
    • (2006) PRL , vol.9 , pp. 27
    • Samko, O.1    Marshall, A.D.2    Rosin, P.L.3
  • 23
    • 67651217688 scopus 로고    scopus 로고
    • Selection of the number of neighbours of each data point for the Locally Linear Embedding Algorithm
    • R. Karbauskaite, O. Kurasova, G. Dzemyda. Selection of the number of neighbours of each data point for the Locally Linear Embedding Algorithm. ITC. 36, 2007, Vol. 4.
    • (2007) ITC , vol.4 , pp. 36
    • Karbauskaite, R.1    Kurasova, O.2    Dzemyda, G.3
  • 24
    • 77953184534 scopus 로고    scopus 로고
    • Local Procrustes for Manifold Embedding: A Measure of Embedding Quality and Embedding Algorithms
    • Submitted to
    • Y. Goldberg, Y. Ritov. Local Procrustes for Manifold Embedding: A Measure of Embedding Quality and Embedding Algorithms. Submitted to J. of Machine Learning. 2008.
    • (2008) J. of Machine Learning
    • Goldberg, Y.1    Ritov, Y.2
  • 25
    • 0042376057 scopus 로고    scopus 로고
    • Estimating Human Body Configurations using Shape Context Matching
    • G. Mori, J. Malki. Estimating Human Body Configurations using Shape Context Matching. ECCV. 2002.
    • (2002) ECCV
    • Mori, G.1    Malki, J.2
  • 26
    • 77953224433 scopus 로고    scopus 로고
    • 3D Reconstruction of Human Skeleton from Single Images or Monocular Video Sequences
    • F. Remondino, A. Roditakis. 3D Reconstruction of Human Skeleton from Single Images or Monocular Video Sequences. DAGM03. 2003.
    • (2003) DAGM03
    • Remondino, F.1    Roditakis, A.2
  • 27
    • 0026116468 scopus 로고
    • Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks
    • S. Chen, C.F.N. Cowan, P.M. Grant. Orthogonal Least Squares Learning Algorithm for Radial Basis Function Networks. IEEE NN. 1991, Vol. 2, No. 2.
    • (1991) IEEE NN , vol.2 , Issue.2
    • Chen, S.1    Cowan, C.F.N.2    Grant, P.M.3
  • 28
    • 0027629412 scopus 로고
    • Rival Penalized Competitive Learning for Clustering Analysis, RBF net, and Curve Detection
    • L. Xu, A. Krzyżak, E. Oja. Rival Penalized Competitive Learning for Clustering Analysis, RBF net, and Curve Detection. IEEE NN. 1993, Vol. 4, No. 4.
    • (1993) IEEE NN , vol.4 , Issue.4
    • Xu, L.1    Krzyzak, A.2    Oja, E.3
  • 30
    • 77953210324 scopus 로고    scopus 로고
    • Brown University
    • HumanEVA dataset, Brown University. http://vision.cs.brown.edu/humaneva.
    • HumanEVA Dataset


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.