메뉴 건너뛰기




Volumn 72, Issue 1, 2010, Pages 136-169

Gibbs sampling, conjugate priors and coupling

Author keywords

Coupling; Exponential families; Gibbs sampling; Location families; Stochastic monotonicity

Indexed keywords


EID: 77953060646     PISSN: 09727671     EISSN: None     Source Type: Journal    
DOI: 10.1007/s13171-010-0004-7     Document Type: Article
Times cited : (9)

References (38)
  • 1
    • 0001318567 scopus 로고
    • Shuffling cards and stopping times
    • Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly, 93, 333-348.
    • (1986) Amer. Math. Monthly. , vol.93 , pp. 333-348
    • Aldous, D.1    Diaconis, P.2
  • 2
    • 38249036545 scopus 로고
    • Strong uniform times and finite random walks
    • Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math., 8, 69-97.
    • (1987) Adv. in Appl. Math. , vol.8 , pp. 69-97
    • Aldous, D.1    Diaconis, P.2
  • 4
    • 0030539791 scopus 로고    scopus 로고
    • On the convergence of the Markov chain simulation method
    • Athreya, K., Doss, H. and Sethuraman, J. (1996). On the convergence of the Markov chain simulation method. Ann. Statist., 24, 89-100.
    • (1996) Ann. Statist. , vol.24 , pp. 89-100
    • Athreya, K.1    Doss, H.2    Sethuraman, J.3
  • 5
    • 17244377219 scopus 로고
    • Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics
    • Barankin, E.W. and Maitra, A.P. (1963). Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics. Sankhya, Ser. A, 25, 217-244.
    • (1963) Sankhya, Ser. A. , vol.25 , pp. 217-244
    • Barankin, E.W.1    Maitra, A.P.2
  • 6
    • 50849122402 scopus 로고    scopus 로고
    • Discussion on the paper: Gibbs sampling, exponential families and orthogonal polynomials
    • Berti, P., Consonni, G. and Pratelli, L. (2009). Discussion on the paper: Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23, 179-182.
    • (2009) Statist. Sci. , vol.23 , pp. 179-182
    • Berti, P.1    Consonni, G.2    Pratelli, L.3
  • 7
    • 0000392073 scopus 로고
    • Variance diminishing transformations: A direct approach to total positivity and its statistical applications
    • Brown, L.D., Johnstone, I.M. and McGibbon, K.B. (1981). Variance diminishing transformations: A direct approach to total positivity and its statistical applications. J. Amer. Statist. Assoc., 76, 824-832.
    • (1981) J. Amer. Statist. Assoc. , vol.76 , pp. 824-832
    • Brown, L.D.1    Johnstone, I.M.2    McGibbon, K.B.3
  • 8
    • 84937730674 scopus 로고
    • Explaining the Gibbs sampler
    • Casella, G. and George, E. (1992). Explaining the Gibbs sampler. Amer. Statist., 46, 167-174.
    • (1992) Amer. Statist. , vol.46 , pp. 167-174
    • Casella, G.1    George, E.2
  • 9
    • 0003730399 scopus 로고
    • Institute of Mathematical Statistics - Monograph Series, 11. Institute of Mathematical Statistics, Hayward, California
    • Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of Mathematical Statistics - Monograph Series, 11. Institute of Mathematical Statistics, Hayward, California.
    • (1988) Group Representations in Probability and Statistics
    • Diaconis, P.1
  • 10
    • 0000406119 scopus 로고
    • Strong stationary times via a new form of duality
    • Diaconis, P. and Fill, J. (1990). Strong stationary times via a new form of duality. Ann. Probab., 16, 1483-1522.
    • (1990) Ann. Probab. , vol.16 , pp. 1483-1522
    • Diaconis, P.1    Fill, J.2
  • 11
    • 70749139670 scopus 로고    scopus 로고
    • Carries, shuffling and an amazing matrix
    • Diaconis, P. and Fulman, J. (2008). Carries, shuffling and an amazing matrix. Amer. Math. Monthly, 116, 788-803.
    • (2008) Amer. Math. Monthly. , vol.116 , pp. 788-803
    • Diaconis, P.1    Fulman, J.2
  • 12
    • 67349097116 scopus 로고    scopus 로고
    • Carries, shuffling, symmetric function
    • Diaconis, P. and Fulman, J. (2009). Carries, shuffling, symmetric function. Adv. In Appl. Math., 43, 176-196.
    • (2009) Adv. in Appl. Math. , vol.43 , pp. 176-196
    • Diaconis, P.1    Fulman, J.2
  • 13
    • 50849137884 scopus 로고    scopus 로고
    • Gibbs sampling, exponential families and orthogonal polynomials
    • Diaconis, P., Khare, K. and Saloff-Coste L. (2008). Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23, 151-178.
    • (2008) Statist. Sci. , vol.23 , pp. 151-178
    • Diaconis, P.1    Khare, K.2    Saloff-Coste, L.3
  • 14
    • 0000811835 scopus 로고
    • Conjugate priors for exponential families
    • Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Statist., 7, 269-281.
    • (1979) Ann. Statist. , vol.7 , pp. 269-281
    • Diaconis, P.1    Ylvisaker, D.2
  • 15
    • 0001501154 scopus 로고
    • Quantifying prior opinion
    • (J.M. Bernardo, M.H. Degroot, D.V. Lindley, A.F.M. Smith, eds.). North Holland, Amstredam
    • Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior opinion. In Bayesian Statistics, 2 (Valencia, 1983), (J.M. Bernardo, M.H. Degroot, D.V. Lindley, A.F.M. Smith, eds.). North Holland, Amstredam, 133-156.
    • (1985) Bayesian Statistics, 2 (Valencia, 1983) , pp. 133-156
    • Diaconis, P.1    Ylvisaker, D.2
  • 16
    • 84972535617 scopus 로고
    • Closed form summation for classical distributions: Variations on a theme of deMoivre
    • Diaconis, P. and Zabell, S. (1991). Closed form summation for classical distributions: Variations on a theme of deMoivre. Statist. Sci., 61, 284-302.
    • (1991) Statist. Sci. , vol.61 , pp. 284-302
    • Diaconis, P.1    Zabell, S.2
  • 19
    • 0035537294 scopus 로고    scopus 로고
    • Stochastic monotonicity and realizable monotonicity
    • Fill, J. and Machida, M. (2001). Stochastic monotonicity and realizable monotonicity. Ann. Appl. Probab., 29, 938-978.
    • (2001) Ann. Appl. Probab. , vol.29 , pp. 938-978
    • Fill, J.1    Machida, M.2
  • 20
    • 0000797976 scopus 로고
    • A class of Wasserstein metrics for probability distributions
    • Givens, C. and Shortt, R. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J., 31, 231-240.
    • (1984) Michigan Math. J. , vol.31 , pp. 231-240
    • Givens, C.1    Shortt, R.2
  • 21
    • 0000154395 scopus 로고    scopus 로고
    • Honest exploration of intractable probability distributions via Markov chain Monte Carlo
    • Jones, G.L. and Hobert, J.P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16, 312-334.
    • (2001) Statist. Sci. , vol.16 , pp. 312-334
    • Jones, G.L.1    Hobert, J.P.2
  • 22
    • 24344493048 scopus 로고    scopus 로고
    • Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
    • Jones, G.L. and Hobert, J.P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist., 32, 784-817.
    • (2004) Ann. Statist. , vol.32 , pp. 784-817
    • Jones, G.L.1    Hobert, J.P.2
  • 23
    • 0004167764 scopus 로고
    • Stanford University Press, Stanford
    • Karlin, S. (1968). Total Positivity. Stanford University Press, Stanford.
    • (1968) Total Positivity
    • Karlin, S.1
  • 24
    • 66149104541 scopus 로고    scopus 로고
    • Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions
    • Khare, K. and Zhou, H. (2009). Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions. Ann. Appl. Probab., 19, 737-777.
    • (2009) Ann. Appl. Probab. , vol.19 , pp. 737-777
    • Khare, K.1    Zhou, H.2
  • 27
    • 0030086282 scopus 로고    scopus 로고
    • Geometric convergence rates for stochastically ordered Markov chains
    • Lund, R.B. and Tweedie, R.L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res., 20, 182-194.
    • (1996) Math. Oper. Res. , vol.20 , pp. 182-194
    • Lund, R.B.1    Tweedie, R.L.2
  • 29
    • 0002233396 scopus 로고
    • Natural exponential families with quadratic variance functions
    • Morris, C. (1982). Natural exponential families with quadratic variance functions. Ann. Statist., 10, 65-80.
    • (1982) Ann. Statist. , vol.10 , pp. 65-80
    • Morris, C.1
  • 30
    • 0000405155 scopus 로고
    • Natural exponential families with quadratic variance functions: Statistical theory
    • Morris, C. (1983). Natural exponential families with quadratic variance functions: Statistical theory. Ann. Statist. 11, 515-589.
    • (1983) Ann. Statist. , vol.11 , pp. 515-589
    • Morris, C.1
  • 31
    • 84923618271 scopus 로고
    • Minorization conditions and convergence rates for Markov chain Monte Carlo
    • Rosenthal, J.S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc., 90, 558-566.
    • (1995) J. Amer. Statist. Assoc. , vol.90 , pp. 558-566
    • Rosenthal, J.S.1
  • 32
    • 21444459448 scopus 로고    scopus 로고
    • Analysis of the Gibbs sampler for a model related to James-Stein estimations
    • Rosenthal, J.S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimations. Statist. Comput., 6, 269-275.
    • (1996) Statist. Comput. , vol.6 , pp. 269-275
    • Rosenthal, J.S.1
  • 33
    • 3042638629 scopus 로고    scopus 로고
    • Quantitative convergence rates of Markov chains: A simple account
    • Rosenthal, J.S. (2002). Quantitative convergence rates of Markov chains: A simple account. Electron. Comm. Probab., 7, 123-128.
    • (2002) Electron. Comm. Probab. , vol.7 , pp. 123-128
    • Rosenthal, J.S.1
  • 34
    • 33645668187 scopus 로고    scopus 로고
    • Total variation lower bounds for finite Markov chains: Wilson's lemma
    • (V.A. Kaimanovich, K. Schmidt and W. Woess, eds.). Walter de Gruyter GmbH and Co. KG, Berlin
    • Saloff-Coste, L. (2004). Total variation lower bounds for finite Markov chains: Wilson's lemma. In Random Walks and Geometry, (V.A. Kaimanovich, K. Schmidt and W. Woess, eds.). Walter de Gruyter GmbH and Co. KG, Berlin, 515-532.
    • (2004) Random Walks and Geometry , pp. 515-532
    • Saloff-Coste, L.1
  • 35
    • 0024830136 scopus 로고
    • Log-concave and unimodal sequences in algebra, combinatorics, and geometry
    • Ann. New York Acad. Sci., New York Acad. Sci., New York
    • Stanley, R. (1989). Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In Graph Theory and Its Applications: East and West (Jinan, 1986). Ann. New York Acad. Sci., 576, New York Acad. Sci., New York, 500-535.
    • (1989) Graph Theory and Its Applications: East and West (Jinan, 1986) , vol.576 , pp. 500-535
    • Stanley, R.1
  • 37
    • 0000576595 scopus 로고
    • Markov chains for exploring posterior distributions (with discus-sion)
    • Tierney, L. (1994). Markov chains for exploring posterior distributions (with discus-sion). Ann. Statist., 22, 1701-1762.
    • (1994) Ann. Statist. , vol.22 , pp. 1701-1762
    • Tierney, L.1
  • 38
    • 2542428916 scopus 로고    scopus 로고
    • Mixing times of lozenge tiling and card shuffling Markov chains
    • Wilson, D.B. (2004). Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab., 14, 274-325.
    • (2004) Ann. Appl. Probab. , vol.14 , pp. 274-325
    • Wilson, D.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.