-
1
-
-
0001318567
-
Shuffling cards and stopping times
-
Aldous, D. and Diaconis, P. (1986). Shuffling cards and stopping times. Amer. Math. Monthly, 93, 333-348.
-
(1986)
Amer. Math. Monthly.
, vol.93
, pp. 333-348
-
-
Aldous, D.1
Diaconis, P.2
-
2
-
-
38249036545
-
Strong uniform times and finite random walks
-
Aldous, D. and Diaconis, P. (1987). Strong uniform times and finite random walks. Adv. in Appl. Math., 8, 69-97.
-
(1987)
Adv. in Appl. Math.
, vol.8
, pp. 69-97
-
-
Aldous, D.1
Diaconis, P.2
-
4
-
-
0030539791
-
On the convergence of the Markov chain simulation method
-
Athreya, K., Doss, H. and Sethuraman, J. (1996). On the convergence of the Markov chain simulation method. Ann. Statist., 24, 89-100.
-
(1996)
Ann. Statist.
, vol.24
, pp. 89-100
-
-
Athreya, K.1
Doss, H.2
Sethuraman, J.3
-
5
-
-
17244377219
-
Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics
-
Barankin, E.W. and Maitra, A.P. (1963). Generalization of the Fisher-Darmois-Koopman-Pitman theorem on sufficient statistics. Sankhya, Ser. A, 25, 217-244.
-
(1963)
Sankhya, Ser. A.
, vol.25
, pp. 217-244
-
-
Barankin, E.W.1
Maitra, A.P.2
-
6
-
-
50849122402
-
Discussion on the paper: Gibbs sampling, exponential families and orthogonal polynomials
-
Berti, P., Consonni, G. and Pratelli, L. (2009). Discussion on the paper: Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23, 179-182.
-
(2009)
Statist. Sci.
, vol.23
, pp. 179-182
-
-
Berti, P.1
Consonni, G.2
Pratelli, L.3
-
7
-
-
0000392073
-
Variance diminishing transformations: A direct approach to total positivity and its statistical applications
-
Brown, L.D., Johnstone, I.M. and McGibbon, K.B. (1981). Variance diminishing transformations: A direct approach to total positivity and its statistical applications. J. Amer. Statist. Assoc., 76, 824-832.
-
(1981)
J. Amer. Statist. Assoc.
, vol.76
, pp. 824-832
-
-
Brown, L.D.1
Johnstone, I.M.2
McGibbon, K.B.3
-
8
-
-
84937730674
-
Explaining the Gibbs sampler
-
Casella, G. and George, E. (1992). Explaining the Gibbs sampler. Amer. Statist., 46, 167-174.
-
(1992)
Amer. Statist.
, vol.46
, pp. 167-174
-
-
Casella, G.1
George, E.2
-
9
-
-
0003730399
-
-
Institute of Mathematical Statistics - Monograph Series, 11. Institute of Mathematical Statistics, Hayward, California
-
Diaconis, P. (1988). Group Representations in Probability and Statistics. Institute of Mathematical Statistics - Monograph Series, 11. Institute of Mathematical Statistics, Hayward, California.
-
(1988)
Group Representations in Probability and Statistics
-
-
Diaconis, P.1
-
10
-
-
0000406119
-
Strong stationary times via a new form of duality
-
Diaconis, P. and Fill, J. (1990). Strong stationary times via a new form of duality. Ann. Probab., 16, 1483-1522.
-
(1990)
Ann. Probab.
, vol.16
, pp. 1483-1522
-
-
Diaconis, P.1
Fill, J.2
-
11
-
-
70749139670
-
Carries, shuffling and an amazing matrix
-
Diaconis, P. and Fulman, J. (2008). Carries, shuffling and an amazing matrix. Amer. Math. Monthly, 116, 788-803.
-
(2008)
Amer. Math. Monthly.
, vol.116
, pp. 788-803
-
-
Diaconis, P.1
Fulman, J.2
-
12
-
-
67349097116
-
Carries, shuffling, symmetric function
-
Diaconis, P. and Fulman, J. (2009). Carries, shuffling, symmetric function. Adv. In Appl. Math., 43, 176-196.
-
(2009)
Adv. in Appl. Math.
, vol.43
, pp. 176-196
-
-
Diaconis, P.1
Fulman, J.2
-
13
-
-
50849137884
-
Gibbs sampling, exponential families and orthogonal polynomials
-
Diaconis, P., Khare, K. and Saloff-Coste L. (2008). Gibbs sampling, exponential families and orthogonal polynomials. Statist. Sci., 23, 151-178.
-
(2008)
Statist. Sci.
, vol.23
, pp. 151-178
-
-
Diaconis, P.1
Khare, K.2
Saloff-Coste, L.3
-
14
-
-
0000811835
-
Conjugate priors for exponential families
-
Diaconis, P. and Ylvisaker, D. (1979). Conjugate priors for exponential families. Ann. Statist., 7, 269-281.
-
(1979)
Ann. Statist.
, vol.7
, pp. 269-281
-
-
Diaconis, P.1
Ylvisaker, D.2
-
15
-
-
0001501154
-
Quantifying prior opinion
-
(J.M. Bernardo, M.H. Degroot, D.V. Lindley, A.F.M. Smith, eds.). North Holland, Amstredam
-
Diaconis, P. and Ylvisaker, D. (1985). Quantifying prior opinion. In Bayesian Statistics, 2 (Valencia, 1983), (J.M. Bernardo, M.H. Degroot, D.V. Lindley, A.F.M. Smith, eds.). North Holland, Amstredam, 133-156.
-
(1985)
Bayesian Statistics, 2 (Valencia, 1983)
, pp. 133-156
-
-
Diaconis, P.1
Ylvisaker, D.2
-
16
-
-
84972535617
-
Closed form summation for classical distributions: Variations on a theme of deMoivre
-
Diaconis, P. and Zabell, S. (1991). Closed form summation for classical distributions: Variations on a theme of deMoivre. Statist. Sci., 61, 284-302.
-
(1991)
Statist. Sci.
, vol.61
, pp. 284-302
-
-
Diaconis, P.1
Zabell, S.2
-
19
-
-
0035537294
-
Stochastic monotonicity and realizable monotonicity
-
Fill, J. and Machida, M. (2001). Stochastic monotonicity and realizable monotonicity. Ann. Appl. Probab., 29, 938-978.
-
(2001)
Ann. Appl. Probab.
, vol.29
, pp. 938-978
-
-
Fill, J.1
Machida, M.2
-
20
-
-
0000797976
-
A class of Wasserstein metrics for probability distributions
-
Givens, C. and Shortt, R. (1984). A class of Wasserstein metrics for probability distributions. Michigan Math. J., 31, 231-240.
-
(1984)
Michigan Math. J.
, vol.31
, pp. 231-240
-
-
Givens, C.1
Shortt, R.2
-
21
-
-
0000154395
-
Honest exploration of intractable probability distributions via Markov chain Monte Carlo
-
Jones, G.L. and Hobert, J.P. (2001). Honest exploration of intractable probability distributions via Markov chain Monte Carlo. Statist. Sci. 16, 312-334.
-
(2001)
Statist. Sci.
, vol.16
, pp. 312-334
-
-
Jones, G.L.1
Hobert, J.P.2
-
22
-
-
24344493048
-
Sufficient burn-in for Gibbs samplers for a hierarchical random effects model
-
Jones, G.L. and Hobert, J.P. (2004). Sufficient burn-in for Gibbs samplers for a hierarchical random effects model. Ann. Statist., 32, 784-817.
-
(2004)
Ann. Statist.
, vol.32
, pp. 784-817
-
-
Jones, G.L.1
Hobert, J.P.2
-
23
-
-
0004167764
-
-
Stanford University Press, Stanford
-
Karlin, S. (1968). Total Positivity. Stanford University Press, Stanford.
-
(1968)
Total Positivity
-
-
Karlin, S.1
-
24
-
-
66149104541
-
Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions
-
Khare, K. and Zhou, H. (2009). Rates of convergence of some multivariate Markov chains with polynomial eigenfunctions. Ann. Appl. Probab., 19, 737-777.
-
(2009)
Ann. Appl. Probab.
, vol.19
, pp. 737-777
-
-
Khare, K.1
Zhou, H.2
-
27
-
-
0030086282
-
Geometric convergence rates for stochastically ordered Markov chains
-
Lund, R.B. and Tweedie, R.L. (1996). Geometric convergence rates for stochastically ordered Markov chains. Math. Oper. Res., 20, 182-194.
-
(1996)
Math. Oper. Res.
, vol.20
, pp. 182-194
-
-
Lund, R.B.1
Tweedie, R.L.2
-
29
-
-
0002233396
-
Natural exponential families with quadratic variance functions
-
Morris, C. (1982). Natural exponential families with quadratic variance functions. Ann. Statist., 10, 65-80.
-
(1982)
Ann. Statist.
, vol.10
, pp. 65-80
-
-
Morris, C.1
-
30
-
-
0000405155
-
Natural exponential families with quadratic variance functions: Statistical theory
-
Morris, C. (1983). Natural exponential families with quadratic variance functions: Statistical theory. Ann. Statist. 11, 515-589.
-
(1983)
Ann. Statist.
, vol.11
, pp. 515-589
-
-
Morris, C.1
-
31
-
-
84923618271
-
Minorization conditions and convergence rates for Markov chain Monte Carlo
-
Rosenthal, J.S. (1995). Minorization conditions and convergence rates for Markov chain Monte Carlo. J. Amer. Statist. Assoc., 90, 558-566.
-
(1995)
J. Amer. Statist. Assoc.
, vol.90
, pp. 558-566
-
-
Rosenthal, J.S.1
-
32
-
-
21444459448
-
Analysis of the Gibbs sampler for a model related to James-Stein estimations
-
Rosenthal, J.S. (1996). Analysis of the Gibbs sampler for a model related to James-Stein estimations. Statist. Comput., 6, 269-275.
-
(1996)
Statist. Comput.
, vol.6
, pp. 269-275
-
-
Rosenthal, J.S.1
-
33
-
-
3042638629
-
Quantitative convergence rates of Markov chains: A simple account
-
Rosenthal, J.S. (2002). Quantitative convergence rates of Markov chains: A simple account. Electron. Comm. Probab., 7, 123-128.
-
(2002)
Electron. Comm. Probab.
, vol.7
, pp. 123-128
-
-
Rosenthal, J.S.1
-
34
-
-
33645668187
-
Total variation lower bounds for finite Markov chains: Wilson's lemma
-
(V.A. Kaimanovich, K. Schmidt and W. Woess, eds.). Walter de Gruyter GmbH and Co. KG, Berlin
-
Saloff-Coste, L. (2004). Total variation lower bounds for finite Markov chains: Wilson's lemma. In Random Walks and Geometry, (V.A. Kaimanovich, K. Schmidt and W. Woess, eds.). Walter de Gruyter GmbH and Co. KG, Berlin, 515-532.
-
(2004)
Random Walks and Geometry
, pp. 515-532
-
-
Saloff-Coste, L.1
-
35
-
-
0024830136
-
Log-concave and unimodal sequences in algebra, combinatorics, and geometry
-
Ann. New York Acad. Sci., New York Acad. Sci., New York
-
Stanley, R. (1989). Log-concave and unimodal sequences in algebra, combinatorics, and geometry. In Graph Theory and Its Applications: East and West (Jinan, 1986). Ann. New York Acad. Sci., 576, New York Acad. Sci., New York, 500-535.
-
(1989)
Graph Theory and Its Applications: East and West (Jinan, 1986)
, vol.576
, pp. 500-535
-
-
Stanley, R.1
-
37
-
-
0000576595
-
Markov chains for exploring posterior distributions (with discus-sion)
-
Tierney, L. (1994). Markov chains for exploring posterior distributions (with discus-sion). Ann. Statist., 22, 1701-1762.
-
(1994)
Ann. Statist.
, vol.22
, pp. 1701-1762
-
-
Tierney, L.1
-
38
-
-
2542428916
-
Mixing times of lozenge tiling and card shuffling Markov chains
-
Wilson, D.B. (2004). Mixing times of lozenge tiling and card shuffling Markov chains. Ann. Appl. Probab., 14, 274-325.
-
(2004)
Ann. Appl. Probab.
, vol.14
, pp. 274-325
-
-
Wilson, D.B.1
|