메뉴 건너뛰기




Volumn 76, Issue 11, 2010, Pages 3620-3624

Paenibacillus sp. Strain E18 bifunctional xylanase-glucanase with a single catalytic domain

Author keywords

[No Author keywords available]

Indexed keywords

ACTIVE CENTER; ACTIVE SITE; BIFUNCTIONAL; CATALYTIC DOMAINS; ENZYMATIC PROPERTIES; GLUCANASE; GLYCOSIDE HYDROLASE FAMILY 10; HOMOLOGY MODELING; LARGER SUBSTRATES; LICHENIN; MOLECULAR DOCKING; MOLECULAR DYNAMIC SIMULATIONS; MONOFUNCTIONAL; PLANT MATERIAL; POLYPEPTIDE CHAIN; SITE DIRECTED MUTAGENESIS; STRUCTURE DIFFERENCE; STRUCTURE-FUNCTION RELATIONSHIP; SUBSTRATE SPECIFICITY; XYLANASES;

EID: 77953042293     PISSN: 00992240     EISSN: 10985336     Source Type: Journal    
DOI: 10.1128/AEM.00345-10     Document Type: Article
Times cited : (57)

References (33)
  • 1
    • 0034725578 scopus 로고    scopus 로고
    • Substrate specificity in glycoside hydrolase family 10 Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A
    • Andrews, S. R., S. J. Charnock, J. H. Lakey, G. J. Davies, M. Claeyssens, W. Nerinckx, M. Underwood, M. L. Sinnott, R. A. Warren, and H. J. Gilbert. 2000. Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A. J. Biol. Chem. 275: 23027-23033.
    • (2000) J. Biol. Chem. , vol.275 , pp. 23027-23033
    • Andrews, S.R.1    Charnock, S.J.2    Lakey, J.H.3    Davies, G.J.4    Claeyssens, M.5    Nerinckx, W.6    Underwood, M.7    Sinnott, M.L.8    Warren, R.A.9    Gilbert, H.J.10
  • 2
    • 0017184389 scopus 로고
    • A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
    • Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
    • (1976) Anal. Biochem. , vol.72 , pp. 248-254
    • Bradford, M.M.1
  • 4
    • 33746921169 scopus 로고    scopus 로고
    • Purification and characterization of novel bifunctional xylanase, XynIII isolated from Aspergillus niger A-25
    • Chen, H.-G., X. Yan, X.-Y. Liu, M.-D. Wang, H.-M. Huang, X.-C. Jia, and J.-A. Wang. 2006. Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J. Microbiol. Biotechnol. 16: 1132-1138.
    • (2006) J. Microbiol. Biotechnol. , vol.16 , pp. 1132-1138
    • Chen, H.-G.1    Yan, X.2    Liu, X.-Y.3    Wang, M.-D.4    Huang, H.-M.5    Jia, X.-C.6    Wang, J.-A.7
  • 5
    • 12144282020 scopus 로고    scopus 로고
    • Xylanases. xylanase families and extremophilic xylanases
    • Collins, T., C. Gerday, and G. Feller. 2005. Xylanases. xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
    • (2005) FEMS Microbiol. Rev. , vol.29 , pp. 3-23
    • Collins, T.1    Gerday, C.2    Feller, G.3
  • 7
    • 0027231373 scopus 로고
    • A bifunctional enzyme with separate xylanase and β-(1,3-1,4)- glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens
    • Flint, H. J., J. Martin, C. A. McPherson, A. S. Daniel, and J. X. Zhang. 1993. A bifunctional enzyme with separate xylanase and β-(1,3-1,4)- glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175: 2943-2951.
    • (1993) J. Bacteriol. , vol.175 , pp. 2943-2951
    • Flint, H.J.1    Martin, J.2    McPherson, C.A.3    Daniel, A.S.4    Zhang, J.X.5
  • 8
    • 0034647437 scopus 로고    scopus 로고
    • Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain
    • Fujimoto, Z., A. Kuno, S. Kaneko, S. Yoshida, H. Kobayashi, I. Kusakabe, and H. Mizuno. 2000. Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain. J. Mol. Biol. 300: 575-585.
    • (2000) J. Mol. Biol. , vol.300 , pp. 575-585
    • Fujimoto, Z.1    Kuno, A.2    Kaneko, S.3    Yoshida, S.4    Kobayashi, H.5    Kusakabe, I.6    Mizuno, H.7
  • 9
    • 0029166485 scopus 로고
    • Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases
    • Henrissat, B., I. Callebaut, S. Fabrega, P. Lehn, J. P. Mornon, and G. Davies. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. U. S. A. 92: 7090-7094.
    • (1995) Proc. Natl. Acad. Sci. U. S. A , vol.92 , pp. 7090-7094
    • Henrissat, B.1    Callebaut, I.2    Fabrega, S.3    Lehn, P.4    Mornon, J.P.5    Davies, G.6
  • 10
    • 0035144221 scopus 로고    scopus 로고
    • Plant enzyme structure. Explaining substrate specificity and the evolution of function
    • Hrmova, M., and G. Finchen 2001. Plant enzyme structure. Explaining substrate specificity and the evolution of function. Plant Physiol. 125: 54-57.
    • (2001) Plant Physiol. , vol.125 , pp. 54-57
    • Hrmova, M.1    Finchen, G.2
  • 11
    • 0028956984 scopus 로고
    • β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven
    • Jenkins, J., L. L. Leggio, G. Harris, and R. Pickersgill. 1995. β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Lett. 362: 281-285.
    • (1995) FEBS Lett. , vol.362 , pp. 281-285
    • Jenkins, J.1    Leggio, L.L.2    Harris, G.3    Pickersgill, R.4
  • 12
    • 0018437275 scopus 로고
    • Purification and some properties of five endo-14-β-D-xylanases and a β-D-xylosidase produced by a strain of Aspergillus niger
    • John, M., B. Schmidt, and J. Schmidt. 1979. Purification and some properties of five endo-1,4-β-D-xylanases and a β-D-xylosidase produced by a strain of Aspergillus niger. Can. J. Biochem. 57: 125-134.
    • (1979) Can. J. Biochem. , vol.57 , pp. 125-134
    • John, M.1    Schmidt, B.2    Schmidt, J.3
  • 14
    • 46949085932 scopus 로고    scopus 로고
    • Bifunctional xylanases and their potential use in biotechnology
    • Khandeparker, R., and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biotechnol. 35: 635-644.
    • (2008) J. Ind. Microbiol. Biotechnol. , vol.35 , pp. 635-644
    • Khandeparker, R.1    Numan, M.T.2
  • 15
    • 0030625619 scopus 로고    scopus 로고
    • Microorganisms and enzymes involved in the degradation of plant fiber cell walls
    • Kuhad, R. C., A. Singh, and K. E. Eriksson. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57: 45-125.
    • (1997) Adv. Biochem. Eng. Biotechnol. , vol.57 , pp. 45-125
    • Kuhad, R.C.1    Singh, A.2    Eriksson, K.E.3
  • 16
    • 0032984477 scopus 로고    scopus 로고
    • Molecular and biotechnologiesl aspects of xylanases
    • Kulkami, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnologiesl aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456.
    • (1999) FEMS Microbiol. Rev. , vol.23 , pp. 411-456
    • Kulkami, N.1    Shendye, A.2    Rao, M.3
  • 17
    • 41149134297 scopus 로고    scopus 로고
    • Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking
    • DOI 10.1002/prot.21778
    • Li, W., Y. Tang, H. Liu, J. Cheng, W. Zhu, and H. Jiang. 2008. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins 71: 938-949. (Pubitemid 351436336)
    • (2008) Proteins: Structure, Function and Genetics , vol.71 , Issue.2 , pp. 938-949
    • Li, W.1    Tang, Y.2    Liu, H.3    Cheng, J.4    Zhu, W.5    Jiang, H.6
  • 18
    • 0028949381 scopus 로고
    • Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking
    • Liu, Y. G., and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.
    • (1995) Genomics , vol.25 , pp. 674-681
    • Liu, Y.G.1    Whittier, R.F.2
  • 19
    • 44649144487 scopus 로고    scopus 로고
    • Bifunctional enhancement of a β-glucanasexylanase fusion enzyme by optimization of peptide linkers
    • Lu, P., and M. G. Feng. 2008. Bifunctional enhancement of a β-glucanasexylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 79: 579-587.
    • (2008) Appl. Microbiol. Biotechnol. , vol.79 , pp. 579-587
    • Lu, P.1    Feng, M.G.2
  • 20
    • 49749117077 scopus 로고    scopus 로고
    • Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSDS
    • Lv, Z., J. Yang, and H. Yuan. 2008. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSDS. Enzyme Microb. Technol. 43: 343-348.
    • (2008) Enzyme Microb. Technol. , vol.43 , pp. 343-348
    • Lv, Z.1    Yang, J.2    Yuan, H.3
  • 21
    • 0037189862 scopus 로고    scopus 로고
    • Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination
    • Mathlouthi, N., L. Saulnier, B. Quemener, and M. Larbier. 2002. Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination. J. Agric. Food Chem. 50: 5121-5127.
    • (2002) J. Agric. Food Chem. , vol.50 , pp. 5121-5127
    • Mathlouthi, N.1    Saulnier, L.2    Quemener, B.3    Larbier, M.4
  • 22
    • 33747333106 scopus 로고
    • Use of dinitrosalicylic acid reagent for determination of reducing sugar
    • Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
    • (1959) Anal. Chem. , vol.31 , pp. 426-428
    • Miller, G.L.1
  • 23
    • 4444282928 scopus 로고    scopus 로고
    • A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
    • Oostenbrink, C., A. Villa, A. E. Mark, and W. F. van Gunsteren. 2004. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25: 1656-1676.
    • (2004) J. Comput. Chem. , vol.25 , pp. 1656-1676
    • Oostenbrink, C.1    Villa, A.2    Mark, A.E.3    Van Gunsteren, W.F.4
  • 25
    • 0030334262 scopus 로고    scopus 로고
    • Xylanases: From biology to biotechnology. Biotechnol
    • Prade, R. A. 1996. Xylanases: from biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13: 101-131.
    • (1996) Genet. Eng. Rev. , vol.13 , pp. 101-131
    • Prade, R.A.1
  • 28
    • 0030642144 scopus 로고    scopus 로고
    • Xylanolytic enzymes from fungi and bacteria
    • Sunna, A., and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67.
    • (1997) Crit. Rev. Biotechnol. , vol.17 , pp. 39-67
    • Sunna, A.1    Antranikian, G.2
  • 29
    • 56049086111 scopus 로고    scopus 로고
    • Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,314-β-D- glueanases
    • Tsai, L. C., Y. N. Chen, and L. F. Shyur. 2008. Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,3-1,4-β-D-glueanases. J. Comput. Aided Mol. Des. 22: 915-923.
    • (2008) J. Comput. Aided Mol. Des. , vol.22 , pp. 915-923
    • Tsai, L.C.1    Chen, Y.N.2    Shyur, L.F.3
  • 31
    • 77952242284 scopus 로고    scopus 로고
    • A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range
    • Wang, J., Y. Bai, P. Yang, P. Shi, H. Luo, K. Meng, H. Huang, J. Yin, and B. Yao. 2010. A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J. Microbiol. Biotechnol. 26: 917-924.
    • (2010) World J. Microbiol. Biotechnol. , vol.26 , pp. 917-924
    • Wang, J.1    Bai, Y.2    Yang, P.3    Shi, P.4    Luo, H.5    Meng, K.6    Huang, H.7    Yin, J.8    Yao, B.9
  • 32
    • 0024087074 scopus 로고
    • Multiplicity of β-1,4-xylanase in microorganisms: Functions and applications
    • Wong, K. K., L. U. Tan, and J. N. Saddler. 1988. Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305-317.
    • (1988) Microbiol. Rev. , vol.52 , pp. 305-317
    • Wong, K.K.1    Tan, L.U.2    Saddler, J.N.3
  • 33
    • 0035075077 scopus 로고    scopus 로고
    • Bioconversion of corn straw by coupling ensiling and solid-state fermentation
    • Yang, X., H. Chen, H. Gao, and Z. Li. 2001. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour. Technol. 78: 277-280.
    • (2001) Bioresour. Technol. , vol.78 , pp. 277-280
    • Yang, X.1    Chen, H.2    Gao, H.3    Li, Z.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.