-
1
-
-
0034725578
-
Substrate specificity in glycoside hydrolase family 10 Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A
-
Andrews, S. R., S. J. Charnock, J. H. Lakey, G. J. Davies, M. Claeyssens, W. Nerinckx, M. Underwood, M. L. Sinnott, R. A. Warren, and H. J. Gilbert. 2000. Substrate specificity in glycoside hydrolase family 10. Tyrosine 87 and leucine 314 play a pivotal role in discriminating between glucose and xylose binding in the proximal active site of Pseudomonas cellulosa xylanase 10A. J. Biol. Chem. 275: 23027-23033.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23027-23033
-
-
Andrews, S.R.1
Charnock, S.J.2
Lakey, J.H.3
Davies, G.J.4
Claeyssens, M.5
Nerinckx, W.6
Underwood, M.7
Sinnott, M.L.8
Warren, R.A.9
Gilbert, H.J.10
-
2
-
-
0017184389
-
A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding
-
Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.
-
(1976)
Anal. Biochem.
, vol.72
, pp. 248-254
-
-
Bradford, M.M.1
-
3
-
-
58149200943
-
The Carbohydrate-Active EnZymes database (CAZy): An expert resource for glycogenomics
-
Cantarel, B. L., P. M. Coutinho, C. Rancurel, T. Bernard, V. Bernard, and B. Henrissat. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37: D233-D238.
-
(2009)
Nucleic Acids Res.
, vol.37
-
-
Cantarel, B.L.1
Coutinho, P.M.2
Rancurel, C.3
Bernard, T.4
Bernard, V.5
Henrissat, B.6
-
4
-
-
33746921169
-
Purification and characterization of novel bifunctional xylanase, XynIII isolated from Aspergillus niger A-25
-
Chen, H.-G., X. Yan, X.-Y. Liu, M.-D. Wang, H.-M. Huang, X.-C. Jia, and J.-A. Wang. 2006. Purification and characterization of novel bifunctional xylanase, XynIII, isolated from Aspergillus niger A-25. J. Microbiol. Biotechnol. 16: 1132-1138.
-
(2006)
J. Microbiol. Biotechnol.
, vol.16
, pp. 1132-1138
-
-
Chen, H.-G.1
Yan, X.2
Liu, X.-Y.3
Wang, M.-D.4
Huang, H.-M.5
Jia, X.-C.6
Wang, J.-A.7
-
5
-
-
12144282020
-
Xylanases. xylanase families and extremophilic xylanases
-
Collins, T., C. Gerday, and G. Feller. 2005. Xylanases. xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29: 3-23.
-
(2005)
FEMS Microbiol. Rev.
, vol.29
, pp. 3-23
-
-
Collins, T.1
Gerday, C.2
Feller, G.3
-
6
-
-
0034725651
-
Substrate specificity in glycoside hydrolase family 10 Structural and kinetic analysis of the Streptomyces lividans xylanase 10A
-
Ducros, V., S. J. Charnock, U. Derewenda, Z. S. Derewenda, Z. Dauter, C. Dupont, F. Shareck, R. Morosoli, D. Kluepfel, and G. J. Davies. 2000. Substrate specificity in glycoside hydrolase family 10. Structural and kinetic analysis of the Streptomyces lividans xylanase 10A. J. Biol. Chem. 275: 23020-23026.
-
(2000)
J. Biol. Chem.
, vol.275
, pp. 23020-23026
-
-
Ducros, V.1
Charnock, S.J.2
Derewenda, U.3
Derewenda, Z.S.4
Dauter, Z.5
Dupont, C.6
Shareck, F.7
Morosoli, R.8
Kluepfel, D.9
Davies, G.J.10
-
7
-
-
0027231373
-
A bifunctional enzyme with separate xylanase and β-(1,3-1,4)- glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens
-
Flint, H. J., J. Martin, C. A. McPherson, A. S. Daniel, and J. X. Zhang. 1993. A bifunctional enzyme with separate xylanase and β-(1,3-1,4)- glucanase domains, encoded by the xynD gene of Ruminococcus flavefaciens. J. Bacteriol. 175: 2943-2951.
-
(1993)
J. Bacteriol.
, vol.175
, pp. 2943-2951
-
-
Flint, H.J.1
Martin, J.2
McPherson, C.A.3
Daniel, A.S.4
Zhang, J.X.5
-
8
-
-
0034647437
-
Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain
-
Fujimoto, Z., A. Kuno, S. Kaneko, S. Yoshida, H. Kobayashi, I. Kusakabe, and H. Mizuno. 2000. Crystal structure of Streptomyces olivaceoviridis E-86 β-xylanase containing xylan-binding domain. J. Mol. Biol. 300: 575-585.
-
(2000)
J. Mol. Biol.
, vol.300
, pp. 575-585
-
-
Fujimoto, Z.1
Kuno, A.2
Kaneko, S.3
Yoshida, S.4
Kobayashi, H.5
Kusakabe, I.6
Mizuno, H.7
-
9
-
-
0029166485
-
Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases
-
Henrissat, B., I. Callebaut, S. Fabrega, P. Lehn, J. P. Mornon, and G. Davies. 1995. Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc. Natl. Acad. Sci. U. S. A. 92: 7090-7094.
-
(1995)
Proc. Natl. Acad. Sci. U. S. A
, vol.92
, pp. 7090-7094
-
-
Henrissat, B.1
Callebaut, I.2
Fabrega, S.3
Lehn, P.4
Mornon, J.P.5
Davies, G.6
-
10
-
-
0035144221
-
Plant enzyme structure. Explaining substrate specificity and the evolution of function
-
Hrmova, M., and G. Finchen 2001. Plant enzyme structure. Explaining substrate specificity and the evolution of function. Plant Physiol. 125: 54-57.
-
(2001)
Plant Physiol.
, vol.125
, pp. 54-57
-
-
Hrmova, M.1
Finchen, G.2
-
11
-
-
0028956984
-
β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven
-
Jenkins, J., L. L. Leggio, G. Harris, and R. Pickersgill. 1995. β-Glucosidase, β-galactosidase, family A cellulases, family F xylanases and two barley glycanases form a superfamily of enzymes with 8-fold β/α architecture and with two conserved glutamates near the carboxy-terminal ends of β-strands four and seven. FEBS Lett. 362: 281-285.
-
(1995)
FEBS Lett.
, vol.362
, pp. 281-285
-
-
Jenkins, J.1
Leggio, L.L.2
Harris, G.3
Pickersgill, R.4
-
12
-
-
0018437275
-
Purification and some properties of five endo-14-β-D-xylanases and a β-D-xylosidase produced by a strain of Aspergillus niger
-
John, M., B. Schmidt, and J. Schmidt. 1979. Purification and some properties of five endo-1,4-β-D-xylanases and a β-D-xylosidase produced by a strain of Aspergillus niger. Can. J. Biochem. 57: 125-134.
-
(1979)
Can. J. Biochem.
, vol.57
, pp. 125-134
-
-
John, M.1
Schmidt, B.2
Schmidt, J.3
-
13
-
-
67149085930
-
Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking
-
Jommuengbout, P., S. Pinitglang, K. L. Kyu, and K. Ratanakhanokchai. 2009. Substrate-binding site of family 11 xylanase from Bacillus firmus K-1 by molecular docking. Biosci. Biotechnol. Biochem. 73: 833-839.
-
(2009)
Biosci. Biotechnol. Biochem.
, vol.73
, pp. 833-839
-
-
Jommuengbout, P.1
Pinitglang, S.2
Kyu, K.L.3
Ratanakhanokchai, K.4
-
14
-
-
46949085932
-
Bifunctional xylanases and their potential use in biotechnology
-
Khandeparker, R., and M. T. Numan. 2008. Bifunctional xylanases and their potential use in biotechnology. J. Ind. Microbiol. Biotechnol. 35: 635-644.
-
(2008)
J. Ind. Microbiol. Biotechnol.
, vol.35
, pp. 635-644
-
-
Khandeparker, R.1
Numan, M.T.2
-
15
-
-
0030625619
-
Microorganisms and enzymes involved in the degradation of plant fiber cell walls
-
Kuhad, R. C., A. Singh, and K. E. Eriksson. 1997. Microorganisms and enzymes involved in the degradation of plant fiber cell walls. Adv. Biochem. Eng. Biotechnol. 57: 45-125.
-
(1997)
Adv. Biochem. Eng. Biotechnol.
, vol.57
, pp. 45-125
-
-
Kuhad, R.C.1
Singh, A.2
Eriksson, K.E.3
-
16
-
-
0032984477
-
Molecular and biotechnologiesl aspects of xylanases
-
Kulkami, N., A. Shendye, and M. Rao. 1999. Molecular and biotechnologiesl aspects of xylanases. FEMS Microbiol. Rev. 23: 411-456.
-
(1999)
FEMS Microbiol. Rev.
, vol.23
, pp. 411-456
-
-
Kulkami, N.1
Shendye, A.2
Rao, M.3
-
17
-
-
41149134297
-
Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking
-
DOI 10.1002/prot.21778
-
Li, W., Y. Tang, H. Liu, J. Cheng, W. Zhu, and H. Jiang. 2008. Probing ligand binding modes of human cytochrome P450 2J2 by homology modeling, molecular dynamics simulation, and flexible molecular docking. Proteins 71: 938-949. (Pubitemid 351436336)
-
(2008)
Proteins: Structure, Function and Genetics
, vol.71
, Issue.2
, pp. 938-949
-
-
Li, W.1
Tang, Y.2
Liu, H.3
Cheng, J.4
Zhu, W.5
Jiang, H.6
-
18
-
-
0028949381
-
Thermal asymmetric interlaced PCR: Automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking
-
Liu, Y. G., and R. F. Whittier. 1995. Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. Genomics 25: 674-681.
-
(1995)
Genomics
, vol.25
, pp. 674-681
-
-
Liu, Y.G.1
Whittier, R.F.2
-
19
-
-
44649144487
-
Bifunctional enhancement of a β-glucanasexylanase fusion enzyme by optimization of peptide linkers
-
Lu, P., and M. G. Feng. 2008. Bifunctional enhancement of a β-glucanasexylanase fusion enzyme by optimization of peptide linkers. Appl. Microbiol. Biotechnol. 79: 579-587.
-
(2008)
Appl. Microbiol. Biotechnol.
, vol.79
, pp. 579-587
-
-
Lu, P.1
Feng, M.G.2
-
20
-
-
49749117077
-
Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSDS
-
Lv, Z., J. Yang, and H. Yuan. 2008. Production, purification and characterization of an alkaliphilic endo-β-1,4-xylanase from a microbial community EMSDS. Enzyme Microb. Technol. 43: 343-348.
-
(2008)
Enzyme Microb. Technol.
, vol.43
, pp. 343-348
-
-
Lv, Z.1
Yang, J.2
Yuan, H.3
-
21
-
-
0037189862
-
Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination
-
Mathlouthi, N., L. Saulnier, B. Quemener, and M. Larbier. 2002. Xylanase, β-glucanase, and other side enzymatic activities have greater effects on the viscosity of several feedstuffs than xylanase and β-glucanase used alone or in combination. J. Agric. Food Chem. 50: 5121-5127.
-
(2002)
J. Agric. Food Chem.
, vol.50
, pp. 5121-5127
-
-
Mathlouthi, N.1
Saulnier, L.2
Quemener, B.3
Larbier, M.4
-
22
-
-
33747333106
-
Use of dinitrosalicylic acid reagent for determination of reducing sugar
-
Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428.
-
(1959)
Anal. Chem.
, vol.31
, pp. 426-428
-
-
Miller, G.L.1
-
23
-
-
4444282928
-
A biomolecular force field based on the free enthalpy of hydration and solvation: The GROMOS force-field parameter sets 53A5 and 53A6
-
Oostenbrink, C., A. Villa, A. E. Mark, and W. F. van Gunsteren. 2004. A biomolecular force field based on the free enthalpy of hydration and solvation: the GROMOS force-field parameter sets 53A5 and 53A6. J. Comput. Chem. 25: 1656-1676.
-
(2004)
J. Comput. Chem.
, vol.25
, pp. 1656-1676
-
-
Oostenbrink, C.1
Villa, A.2
Mark, A.E.3
Van Gunsteren, W.F.4
-
24
-
-
21244467488
-
Validation of the 53A6 GROMOS force field
-
Oostenbrink, C., T. A. Soares, N. F. van der Vegt, and W. F. van Gunsteren. 2005. Validation of the 53A6 GROMOS force field. Eur. Biophys. J. 34: 273-284.
-
(2005)
Eur. Biophys. J
, vol.34
, pp. 273-284
-
-
Oostenbrink, C.1
Soares, T.A.2
Van Der Vegt, N.F.3
Van Gunsteren, W.F.4
-
25
-
-
0030334262
-
Xylanases: From biology to biotechnology. Biotechnol
-
Prade, R. A. 1996. Xylanases: from biology to biotechnology. Biotechnol. Genet. Eng. Rev. 13: 101-131.
-
(1996)
Genet. Eng. Rev.
, vol.13
, pp. 101-131
-
-
Prade, R.A.1
-
26
-
-
32544451917
-
Thermostable xylanase from Marasmius sp.: Purification and characterization
-
Ratanachomsri, U., R. Sriprang, W. Sornlek, B. Buaban, V. Champreda, S. Tanapongpipat, and L. Eurwilaichitr. 2006. Thermostable xylanase from Marasmius sp.: purification and characterization. J. Biochem. Mol. Biol. 39: 105-110.
-
(2006)
J. Biochem. Mol. Biol.
, vol.39
, pp. 105-110
-
-
Ratanachomsri, U.1
Sriprang, R.2
Sornlek, W.3
Buaban, B.4
Champreda, V.5
Tanapongpipat, S.6
Eurwilaichitr, L.7
-
27
-
-
34447631523
-
Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothemophilus
-
Solomon, V., A. Teplitsky, S. Shulami, G. Zolotnitsky, Y. Shoham, and G. Shoham. 2007. Structure-specificity relationships of an intracellular xylanase from Geobacillus stearothemophilus. Acta Crystallogr. D Biol. Crystallogr. 63: 845-859.
-
(2007)
Acta Crystallogr. D Biol. Crystallogr.
, vol.63
, pp. 845-859
-
-
Solomon, V.1
Teplitsky, A.2
Shulami, S.3
Zolotnitsky, G.4
Shoham, Y.5
Shoham, G.6
-
28
-
-
0030642144
-
Xylanolytic enzymes from fungi and bacteria
-
Sunna, A., and G. Antranikian. 1997. Xylanolytic enzymes from fungi and bacteria. Crit. Rev. Biotechnol. 17: 39-67.
-
(1997)
Crit. Rev. Biotechnol.
, vol.17
, pp. 39-67
-
-
Sunna, A.1
Antranikian, G.2
-
29
-
-
56049086111
-
Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,314-β-D- glueanases
-
Tsai, L. C., Y. N. Chen, and L. F. Shyur. 2008. Structural modeling of glucanase-substrate complexes suggests a conserved tyrosine is involved in carbohydrate recognition in plant 1,3-1,4-β-D-glueanases. J. Comput. Aided Mol. Des. 22: 915-923.
-
(2008)
J. Comput. Aided Mol. Des.
, vol.22
, pp. 915-923
-
-
Tsai, L.C.1
Chen, Y.N.2
Shyur, L.F.3
-
30
-
-
27344454932
-
GROMACS: Fast, flexible, and free
-
Van Der Spoel, D., E. Lindahl, B. Hess, G. Groenhof, A. E. Mark, and H. J. Berendsen. 2005. GROMACS: fast, flexible, and free. J. Comput. Chem. 26: 1701-1718.
-
(2005)
J. Comput. Chem.
, vol.26
, pp. 1701-1718
-
-
Van Der Spoel, D.1
Lindahl, E.2
Hess, B.3
Groenhof, G.4
Mark, A.E.5
Berendsen, H.J.6
-
31
-
-
77952242284
-
A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range
-
Wang, J., Y. Bai, P. Yang, P. Shi, H. Luo, K. Meng, H. Huang, J. Yin, and B. Yao. 2010. A new xylanase from thermoalkaline Anoxybacillus sp. E2 with high activity and stability over a broad pH range. World J. Microbiol. Biotechnol. 26: 917-924.
-
(2010)
World J. Microbiol. Biotechnol.
, vol.26
, pp. 917-924
-
-
Wang, J.1
Bai, Y.2
Yang, P.3
Shi, P.4
Luo, H.5
Meng, K.6
Huang, H.7
Yin, J.8
Yao, B.9
-
32
-
-
0024087074
-
Multiplicity of β-1,4-xylanase in microorganisms: Functions and applications
-
Wong, K. K., L. U. Tan, and J. N. Saddler. 1988. Multiplicity of β-1,4-xylanase in microorganisms: functions and applications. Microbiol. Rev. 52: 305-317.
-
(1988)
Microbiol. Rev.
, vol.52
, pp. 305-317
-
-
Wong, K.K.1
Tan, L.U.2
Saddler, J.N.3
-
33
-
-
0035075077
-
Bioconversion of corn straw by coupling ensiling and solid-state fermentation
-
Yang, X., H. Chen, H. Gao, and Z. Li. 2001. Bioconversion of corn straw by coupling ensiling and solid-state fermentation. Bioresour. Technol. 78: 277-280.
-
(2001)
Bioresour. Technol.
, vol.78
, pp. 277-280
-
-
Yang, X.1
Chen, H.2
Gao, H.3
Li, Z.4
|