메뉴 건너뛰기




Volumn , Issue , 2009, Pages 691-696

Detrending moving average algorithm: A brief review

Author keywords

[No Author keywords available]

Indexed keywords

ARBITRARY DIMENSION; DETRENDING MOVING AVERAGES; FRACTAL PROPERTIES; FRACTAL SETS; HURST EXPONENTS; LONG RANGE DEPENDENCE; SELF-ORGANIZED CRITICALITY;

EID: 77952720827     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/TIC-STH.2009.5444412     Document Type: Conference Paper
Times cited : (53)

References (60)
  • 3
    • 0000559594 scopus 로고    scopus 로고
    • M.H.R. Stanley, L.A.N. Amaral, S.V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, H.E. Stanley, 379, 804 (1996)
    • M.H.R. Stanley, L.A.N. Amaral, S.V. Buldyrev, S. Havlin, H. Leschhorn, P. Maass, M.A. Salinger, H.E. Stanley, 379, 804 (1996).
  • 8
    • 33845256049 scopus 로고    scopus 로고
    • M. Batty, Nature 444, 592 (2006).
    • (2006) Nature , vol.444 , pp. 592
    • Batty, M.1
  • 50
    • 0041322668 scopus 로고    scopus 로고
    • Noise in Complex Systems and Stochastic Dynamics
    • L. Schimansky-Geier, D. Abbott, A. Neiman, C. Van den Broeck, Eds.
    • A. Carbone and G. Castelli, Noise in Complex Systems and Stochastic Dynamics, L. Schimansky-Geier, D. Abbott, A. Neiman, C. Van den Broeck, Eds., Proc. of SPIE, 407, 5114 (2003).
    • (2003) Proc. of SPIE , vol.407 , pp. 5114
    • Carbone, A.1    Castelli, G.2
  • 54
    • 4344703890 scopus 로고    scopus 로고
    • Noise in Complex Systems and Stochastic Dynamics
    • Eds. Z. Gingl, J.M. Sancho, L. Schimansky-Geier, J. Kertesz
    • A. Carbone and H.E. Stanley, Noise in Complex Systems and Stochastic Dynamics, (Eds. Z. Gingl, J.M. Sancho, L. Schimansky-Geier, J. Kertesz) Proc. of SPIE 5471, 1 (2004).
    • (2004) Proc. of SPIE , vol.5471 , pp. 1
    • Carbone, A.1    Stanley, H.E.2
  • 56
    • 26944462286 scopus 로고    scopus 로고
    • L. Xu et al. Phys. Rev. E 71, 051101 (2005).
    • (2005) Phys. Rev. E , vol.71 , pp. 051101
    • Xu, L.1
  • 60
    • 77952721353 scopus 로고    scopus 로고
    • Source and executable files of the DMA algorithm can be downloaded at
    • Source and executable files of the DMA algorithm can be downloaded at www.polito.it/noiselab/utilities.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.