-
1
-
-
6344280257
-
A New Algorithm to Get the Initial Centroids
-
August
-
Yuan F, Meng Z. H, Zhang H. X and Dong C. R, "A New Algorithm to Get the Initial Centroids," Proc. of the 3rd International Conference on Machine Learning and Cybernetics, pp. 26-29, August 2004.
-
(2004)
Proc. of the 3rd International Conference on Machine Learning and Cybernetics
, pp. 26-29
-
-
Yuan, F.1
Meng, Z.H.2
Zhang, H.X.3
Dong, C.R.4
-
2
-
-
39749179872
-
Clustering algorithms Research
-
January
-
Sun Jigui, Liu Jie, Zhao Lianyu, "Clustering algorithms Research",Journal of Software ,Vol 19,No 1, pp.48-61,January 2008.
-
(2008)
Journal of Software
, vol.19
, Issue.1
, pp. 48-61
-
-
Jigui, S.1
Jie, L.2
Lianyu, Z.3
-
3
-
-
79551685318
-
Fine particles, thin films and exchange anisotropy
-
"Research on Modified k-means Data Cluster Algorithm"I. S. Jacobs and C. P. Bean, July
-
Sun Shibao, Qin Keyun,"Research on Modified k-means Data Cluster Algorithm"I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," Computer Engineering, vol.33, No.13, pp.200-201,July 2007.
-
(2007)
Computer Engineering
, vol.33
, Issue.13
, pp. 200-201
-
-
Shibao, S.1
Keyun, Q.2
-
5
-
-
33750596732
-
An efficient enhanced k-means clustering algorithm
-
July
-
Fahim A M,Salem A M,Torkey F A, "An efficient enhanced k-means clustering algorithm" Journal of Zhejiang University Science A, Vol.10, pp:1626-1633,July 2006.
-
(2006)
Journal of Zhejiang University Science A
, vol.10
, pp. 1626-1633
-
-
Fahim, A.M.1
Salem, A.M.2
Torkey, F.A.3
-
6
-
-
84964458218
-
GDILC: A grid-based density isoline clustering algorithm
-
Zhong YX, Cui S, Yang Y, eds. Beijing: IEEE Press
-
Zhao YC, Song J. GDILC: A grid-based density isoline clustering algorithm. In: Zhong YX, Cui S, Yang Y, eds. Proc. of the Internet Conf. on Info-Net. Beijing: IEEE Press, 2001. 140-145. http://ieeexplore.ieee.org/iel5/ 7719/21161/00982709.pdf
-
(2001)
Proc. of the Internet Conf. on Info-Net
, pp. 140-145
-
-
Zhao, Y.C.1
Song, J.2
-
7
-
-
27144536001
-
Extensions to the k-means algorithm for clustering large data sets with categorical values
-
Huang Z, "Extensions to the k-means algorithm for clustering large data sets with categorical values," Data Mining and Knowledge Discovery, Vol.2, pp:283-304, 1998. (Pubitemid 128695480)
-
(1998)
Data Mining and Knowledge Discovery
, vol.2
, Issue.3
, pp. 283-304
-
-
Huang, Z.1
-
8
-
-
77952686470
-
Improving the Accuracy and Efficiency of the k-means Clustering Algorithm
-
london, July
-
K.A.Abdul Nazeer, M.P.Sebastian, "Improving the Accuracy and Efficiency of the k-means Clustering Algorithm",Proceeding of the World Congress on Engineering, vol 1,london, July 2009.
-
(2009)
Proceeding of the World Congress on Engineering
, vol.1
-
-
Abdul Nazeer, K.A.1
Sebastian, M.P.2
-
9
-
-
84877765730
-
Partitional vs hierarchical clustering using a minimum grammar complexity approach
-
Proc. of the SSPR & SPR 2000
-
Fred ALN, Leitão JMN. Partitional vs hierarchical clustering using a minimum grammar complexity approach. In: Proc. of the SSPR & SPR 2000. LNCS 1876, 2000. 193-202. http://www.sigmod.org/dblp/db/conf/sspr/sspr2000.htm
-
(2000)
LNCS
, vol.1876
, pp. 193-202
-
-
Fred, A.L.N.1
Leitão, J.M.N.2
-
10
-
-
0034056621
-
Hempel's Raven paradox: A positive approach to cluster analysis
-
DOI 10.1016/S0305-0548(99)00049-0, PII S0305054899000490
-
Gelbard R, Spiegler I. Hempel's raven paradox: A positive approach to cluster analysis. Computers and Operations Research, 2000,27(4):305-320. (Pubitemid 30144757)
-
(2000)
Computers and Operations Research
, vol.27
, Issue.4
, pp. 305-320
-
-
Gelbard, R.1
Spiegler, I.2
-
12
-
-
2442514312
-
K-Nearest-Neighbor in data clustering: Incorporating local information into global optimization
-
Nicosia: ACM Press
-
Ding C, He X. K-Nearest-Neighbor in data clustering: Incorporating local information into global optimization. In: Proc. of the ACM Symp. on Applied Computing. Nicosia: ACM Press, 2004. 584-589. http://www.acm.org/conferences/ sac/sac2004/
-
(2004)
Proc. of the ACM Symp. on Applied Computing
, pp. 584-589
-
-
Ding, C.1
He, X.2
-
13
-
-
85140527321
-
An efficient approach to clustering in large multimedia databases with noise
-
Agrawal R,Stolorz PE,Piatetsky- Shapiro G,eds. New York:AAAIPress
-
Hinneburg A,Keim D.An efficient approach to clustering in large multimedia databases with noise.In:Agrawal R,Stolorz PE,Piatetsky- Shapiro G,eds.Proc.of the 4th Int'l Conf.on Knowledge Discovery and Data Mining(KDD'98).New York:AAAIPress,1998.58-65
-
(1998)
Proc.of the 4th Int'l Conf.on Knowledge Discovery and Data Mining(KDD'98)
, pp. 58-65
-
-
Hinneburg, A.1
Keim, D.2
-
14
-
-
0030157145
-
BIRCH:An efficient data clustering method for very large databases
-
Jagadish HV,Mumick IS,eds. Montreal:ACM Press
-
Zhang T,Ramakrishnan R,Livny M.BIRCH:An efficient data clustering method for very large databases.In:Jagadish HV,Mumick IS,eds.Proc.of the 1996 ACM SIGMOD Int'l Conf.on Management of Data.Montreal:ACM Press,1996.103-114
-
(1996)
Proc.of the 1996 ACM SIGMOD Int'l Conf.on Management of Data
, pp. 103-114
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
-
15
-
-
33846024749
-
ST-DBSCAN: An algorithm for clustering spatial-temporal data
-
DOI 10.1016/j.datak.2006.01.013, PII S0169023X06000218
-
Birant D, Kut A. ST-DBSCAN: An algorithm for clustering spatialtemporal data. Data & Knowledge Engineering, 2007,60(1): 208-221. (Pubitemid 46053593)
-
(2007)
Data and Knowledge Engineering
, vol.60
, Issue.1
, pp. 208-221
-
-
Birant, D.1
Kut, A.2
|