메뉴 건너뛰기




Volumn , Issue , 2010, Pages 63-67

Research on k-means clustering algorithm: An improved k-means clustering algorithm

Author keywords

Clustering analysis; Computational complexity; Distance; k means algorithm

Indexed keywords

ANALYTICAL METHOD; CLUSTER CENTERS; CLUSTERING ANALYSIS; CLUSTERING RESULTS; DATA OBJECTS; IMPROVED K-MEANS ALGORITHM; IMPROVED METHODS; K-MEANS; K-MEANS ALGORITHM; K-MEANS CLUSTERING ALGORITHM; RUNNING TIME;

EID: 77952695482     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/IITSI.2010.74     Document Type: Conference Paper
Times cited : (622)

References (15)
  • 2
    • 39749179872 scopus 로고    scopus 로고
    • Clustering algorithms Research
    • January
    • Sun Jigui, Liu Jie, Zhao Lianyu, "Clustering algorithms Research",Journal of Software ,Vol 19,No 1, pp.48-61,January 2008.
    • (2008) Journal of Software , vol.19 , Issue.1 , pp. 48-61
    • Jigui, S.1    Jie, L.2    Lianyu, Z.3
  • 3
    • 79551685318 scopus 로고    scopus 로고
    • Fine particles, thin films and exchange anisotropy
    • "Research on Modified k-means Data Cluster Algorithm"I. S. Jacobs and C. P. Bean, July
    • Sun Shibao, Qin Keyun,"Research on Modified k-means Data Cluster Algorithm"I. S. Jacobs and C. P. Bean, "Fine particles, thin films and exchange anisotropy," Computer Engineering, vol.33, No.13, pp.200-201,July 2007.
    • (2007) Computer Engineering , vol.33 , Issue.13 , pp. 200-201
    • Shibao, S.1    Keyun, Q.2
  • 6
    • 84964458218 scopus 로고    scopus 로고
    • GDILC: A grid-based density isoline clustering algorithm
    • Zhong YX, Cui S, Yang Y, eds. Beijing: IEEE Press
    • Zhao YC, Song J. GDILC: A grid-based density isoline clustering algorithm. In: Zhong YX, Cui S, Yang Y, eds. Proc. of the Internet Conf. on Info-Net. Beijing: IEEE Press, 2001. 140-145. http://ieeexplore.ieee.org/iel5/ 7719/21161/00982709.pdf
    • (2001) Proc. of the Internet Conf. on Info-Net , pp. 140-145
    • Zhao, Y.C.1    Song, J.2
  • 7
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang Z, "Extensions to the k-means algorithm for clustering large data sets with categorical values," Data Mining and Knowledge Discovery, Vol.2, pp:283-304, 1998. (Pubitemid 128695480)
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 9
    • 84877765730 scopus 로고    scopus 로고
    • Partitional vs hierarchical clustering using a minimum grammar complexity approach
    • Proc. of the SSPR & SPR 2000
    • Fred ALN, Leitão JMN. Partitional vs hierarchical clustering using a minimum grammar complexity approach. In: Proc. of the SSPR & SPR 2000. LNCS 1876, 2000. 193-202. http://www.sigmod.org/dblp/db/conf/sspr/sspr2000.htm
    • (2000) LNCS , vol.1876 , pp. 193-202
    • Fred, A.L.N.1    Leitão, J.M.N.2
  • 10
    • 0034056621 scopus 로고    scopus 로고
    • Hempel's Raven paradox: A positive approach to cluster analysis
    • DOI 10.1016/S0305-0548(99)00049-0, PII S0305054899000490
    • Gelbard R, Spiegler I. Hempel's raven paradox: A positive approach to cluster analysis. Computers and Operations Research, 2000,27(4):305-320. (Pubitemid 30144757)
    • (2000) Computers and Operations Research , vol.27 , Issue.4 , pp. 305-320
    • Gelbard, R.1    Spiegler, I.2
  • 12
    • 2442514312 scopus 로고    scopus 로고
    • K-Nearest-Neighbor in data clustering: Incorporating local information into global optimization
    • Nicosia: ACM Press
    • Ding C, He X. K-Nearest-Neighbor in data clustering: Incorporating local information into global optimization. In: Proc. of the ACM Symp. on Applied Computing. Nicosia: ACM Press, 2004. 584-589. http://www.acm.org/conferences/ sac/sac2004/
    • (2004) Proc. of the ACM Symp. on Applied Computing , pp. 584-589
    • Ding, C.1    He, X.2
  • 13
    • 85140527321 scopus 로고    scopus 로고
    • An efficient approach to clustering in large multimedia databases with noise
    • Agrawal R,Stolorz PE,Piatetsky- Shapiro G,eds. New York:AAAIPress
    • Hinneburg A,Keim D.An efficient approach to clustering in large multimedia databases with noise.In:Agrawal R,Stolorz PE,Piatetsky- Shapiro G,eds.Proc.of the 4th Int'l Conf.on Knowledge Discovery and Data Mining(KDD'98).New York:AAAIPress,1998.58-65
    • (1998) Proc.of the 4th Int'l Conf.on Knowledge Discovery and Data Mining(KDD'98) , pp. 58-65
    • Hinneburg, A.1    Keim, D.2
  • 15
    • 33846024749 scopus 로고    scopus 로고
    • ST-DBSCAN: An algorithm for clustering spatial-temporal data
    • DOI 10.1016/j.datak.2006.01.013, PII S0169023X06000218
    • Birant D, Kut A. ST-DBSCAN: An algorithm for clustering spatialtemporal data. Data & Knowledge Engineering, 2007,60(1): 208-221. (Pubitemid 46053593)
    • (2007) Data and Knowledge Engineering , vol.60 , Issue.1 , pp. 208-221
    • Birant, D.1    Kut, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.