메뉴 건너뛰기




Volumn 189, Issue 1, 2010, Pages 113-120

Time-shift denoising source separation

Author keywords

Artifact removal; EEG; Electroencephalography; Magnetoencephalography; MEG; Noise reduction; Principal component analysis

Indexed keywords

ALGORITHM; ANIMAL EXPERIMENT; ARTICLE; ARTIFACT REDUCTION; CONTROLLED STUDY; ELECTROENCEPHALOGRAPHY; FILTER; GUINEA PIG; HUMAN; HUMAN EXPERIMENT; MAGNETOENCEPHALOGRAPHY; MULTICHANNEL RECORDER; NEUROPHYSIOLOGY; NOISE REDUCTION; NONHUMAN; NORMAL HUMAN; PRIORITY JOURNAL; REPRODUCIBILITY; SIGNAL NOISE RATIO; SIGNAL PROCESSING; SIMULATION;

EID: 77952549108     PISSN: 01650270     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jneumeth.2010.03.002     Document Type: Article
Times cited : (20)

References (32)
  • 4
    • 77952554165 scopus 로고    scopus 로고
    • Temporal and spatial prewhitening of multichannel MEG data. Jülich Supercomputing Center technical report FZJ-ZAM-IB-9721
    • Beucker R, Schlitt HA. Temporal and spatial prewhitening of multichannel MEG data. Jülich Supercomputing Center technical report FZJ-ZAM-IB-9721; 1997.
    • (1997)
    • Beucker, R.1    Schlitt, H.A.2
  • 5
    • 34247218119 scopus 로고    scopus 로고
    • Filtering by optimal projection and application to automatic artifact removal from EEG
    • Boudet S., Peyrodie L., Gallois P., Vasseur C. Filtering by optimal projection and application to automatic artifact removal from EEG. Signal Proc 2007, 87:1978-1992.
    • (2007) Signal Proc , vol.87 , pp. 1978-1992
    • Boudet, S.1    Peyrodie, L.2    Gallois, P.3    Vasseur, C.4
  • 7
    • 33646170864 scopus 로고    scopus 로고
    • Blind signal processing methods for analyzing multichannel brain signals
    • Cichocki A. Blind signal processing methods for analyzing multichannel brain signals. Int J Bioelectromagn 2004, 6:1-18.
    • (2004) Int J Bioelectromagn , vol.6 , pp. 1-18
    • Cichocki, A.1
  • 10
  • 13
    • 0036331381 scopus 로고    scopus 로고
    • Exploratory fMRI analysis by autocorrelation maximization
    • Friman O., Borga M., Lundberg P., Knutsson H. Exploratory fMRI analysis by autocorrelation maximization. Neuroimage 2002, 16:454-464.
    • (2002) Neuroimage , vol.16 , pp. 454-464
    • Friman, O.1    Borga, M.2    Lundberg, P.3    Knutsson, H.4
  • 16
    • 0000107975 scopus 로고
    • Relations between two sets of variants
    • Hotelling H. Relations between two sets of variants. Biometrika 1936, 28:321-377.
    • (1936) Biometrika , vol.28 , pp. 321-377
    • Hotelling, H.1
  • 18
    • 0025149099 scopus 로고
    • Spatial patterns underlying population differences in the background EEG
    • Koles Z.J., Lazar M.S., Zhou S.Z. Spatial patterns underlying population differences in the background EEG. Brain Topogr 1990, 2:275-284.
    • (1990) Brain Topogr , vol.2 , pp. 275-284
    • Koles, Z.J.1    Lazar, M.S.2    Zhou, S.Z.3
  • 22
    • 0036127261 scopus 로고    scopus 로고
    • Cardiac artifact subspace identification and elimination in cognitive MEG data using time-delayed decorrelation
    • Sander T.H., Wubbeler G., Lueschow A., Curio G., Trahms L. Cardiac artifact subspace identification and elimination in cognitive MEG data using time-delayed decorrelation. IEEE Trans Biomed Eng 2002, 49:345-354.
    • (2002) IEEE Trans Biomed Eng , vol.49 , pp. 345-354
    • Sander, T.H.1    Wubbeler, G.2    Lueschow, A.3    Curio, G.4    Trahms, L.5
  • 23
    • 77952550451 scopus 로고    scopus 로고
    • Särelä J. Exploratory source separation in biomedical systems. Technical University of Helsinki, unpublished thesis
    • Särelä J. Exploratory source separation in biomedical systems. Technical University of Helsinki, unpublished thesis; 2004.
    • (2004)
  • 24
  • 25
    • 0034855031 scopus 로고    scopus 로고
    • Reconstructing spatio-temporal activities of neural sources from magnetoencephalographic data using a vector beamformer
    • Sekihara K., Nagarajan S., Poeppel D., Miyashita Y. Reconstructing spatio-temporal activities of neural sources from magnetoencephalographic data using a vector beamformer. IEEE ICASSP 2001, 3:2021-2024.
    • (2001) IEEE ICASSP , vol.3 , pp. 2021-2024
    • Sekihara, K.1    Nagarajan, S.2    Poeppel, D.3    Miyashita, Y.4
  • 26
    • 33747831828 scopus 로고    scopus 로고
    • A novel adaptive beamformer for MEG source reconstruction effective when large background brain activities exist
    • Sekihara K., Hild K.E., Nagarajan S.S. A novel adaptive beamformer for MEG source reconstruction effective when large background brain activities exist. IEEE Trans Biomed Eng 2006, 53:1755-1764.
    • (2006) IEEE Trans Biomed Eng , vol.53 , pp. 1755-1764
    • Sekihara, K.1    Hild, K.E.2    Nagarajan, S.S.3
  • 27
    • 27644509833 scopus 로고    scopus 로고
    • Applications of the signal space separation method
    • Taulu S., Simola J., Kajola M. Applications of the signal space separation method. IEEE Trans Biomed Eng 2005, 53:3359-3372.
    • (2005) IEEE Trans Biomed Eng , vol.53 , pp. 3359-3372
    • Taulu, S.1    Simola, J.2    Kajola, M.3
  • 28
    • 0042167964 scopus 로고    scopus 로고
    • Fast algorithms for Bayesian independent component analysis. In: Proceedings of the second international workshop on independent component analysis and blind signal separation (ICA 2000)
    • Valpola H, Pajunen P. Fast algorithms for Bayesian independent component analysis. In: Proceedings of the second international workshop on independent component analysis and blind signal separation (ICA 2000); 2000: p. 233-7.
    • (2000) , pp. 233-7
    • Valpola, H.1    Pajunen, P.2
  • 29
    • 29144439879 scopus 로고    scopus 로고
    • How many channels are needed for MEG? Neurology, Neurophysiology and Neuroscience Available at: Date accessed: 12 November 2009
    • Vrba J, Robinson SE, McCubbin J. How many channels are needed for MEG? Neurology, Neurophysiology and Neuroscience 2004; 99:1-5, Available at: Date accessed: 12 November 2009. http://www.neurojournal.com/article/view/313.
    • (2004) , vol.99 , pp. 1-5
    • Vrba, J.1    Robinson, S.E.2    McCubbin, J.3
  • 30
    • 11144252653 scopus 로고    scopus 로고
    • Can we learn anything from single-channel unaveraged MEG data?
    • Woon W.L., Lowe D. Can we learn anything from single-channel unaveraged MEG data?. Neural Comput Appl 2004, 13:360-368.
    • (2004) Neural Comput Appl , vol.13 , pp. 360-368
    • Woon, W.L.1    Lowe, D.2
  • 31
    • 77952543308 scopus 로고
    • Linear prediction analysis of multichannel speech recordings. In: Proc. ProRisc IEEE Benelux workshop on circuits, systems and signal processing
    • Xie F, Le Cerf P, Van Compernolle D. Linear prediction analysis of multichannel speech recordings. In: Proc. ProRisc IEEE Benelux workshop on circuits, systems and signal processing, 1992; 277-82.
    • (1992) , pp. 277-82
    • Xie, F.1    Le Cerf, P.2    Van Compernolle, D.3
  • 32
    • 0033982156 scopus 로고    scopus 로고
    • Artifact reduction in magnetoneurography based on time-delayed second-order correlations
    • Ziehe A., Müller K-R., Nolte G., Mackert B.M., Curio G. Artifact reduction in magnetoneurography based on time-delayed second-order correlations. IEEE Trans Biomed Eng 2000, 47:75-87.
    • (2000) IEEE Trans Biomed Eng , vol.47 , pp. 75-87
    • Ziehe, A.1    Müller, K.-R.2    Nolte, G.3    Mackert, B.M.4    Curio, G.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.