메뉴 건너뛰기




Volumn 73, Issue 10-12, 2010, Pages 1662-1668

Building topographic subspace model with transfer learning for sparse representation

Author keywords

Image classification; Image retrieval; Sparse representation; Topographic subspace model; Transfer learning

Indexed keywords

AUXILIARY DATA; CLASS LABELS; DESCRIPTORS; DISCRIMINATIVE FEATURES; IMAGE DATASETS; PHOTOMETRIC IMAGES; ROTATION INVARIANT; SPARSE REPRESENTATION; SUBSPACE LEARNING; SUBSPACE MODELS; TOPOGRAPHIC MODELS; TOPOGRAPHIC SUBSPACE MODEL; TRAINING DATA; TRAINING IMAGE; TRANSFER LEARNING; VISUAL CORTEXES;

EID: 77952548790     PISSN: 09252312     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.neucom.2009.11.041     Document Type: Article
Times cited : (8)

References (29)
  • 1
    • 0345414182 scopus 로고    scopus 로고
    • Video google: a text retrieval approach to object matching in videos, in: Proceedings of ICCV.
    • J. Sivic, A. Zisserman, Video google: a text retrieval approach to object matching in videos, in: Proceedings of ICCV, 2003.
    • (2003)
    • Sivic, J.1    Zisserman, A.2
  • 3
    • 36849003521 scopus 로고    scopus 로고
    • Towards optimal bag-of-features for object categorization and semantic video retrieval, in: International Conference on Image and Video Retrieval.
    • Y.G. Jiang, C.W. Ngo, J. Yang, Towards optimal bag-of-features for object categorization and semantic video retrieval, in: International Conference on Image and Video Retrieval, 2007.
    • (2007)
    • Jiang, Y.G.1    Ngo, C.W.2    Yang, J.3
  • 4
    • 85199260503 scopus 로고    scopus 로고
    • Learning gen-erative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories, CVPR Workshop on Gen.-Model Based Vision.
    • L. Fei-Fei, R. Fergus, P. Perona, Learning gen-erative visual models from few training examples: an incremental Bayesian approach tested on 101 object categories, CVPR Workshop on Gen.-Model Based Vision, 2004.
    • (2004)
    • Fei-Fei, L.1    Fergus, R.2    Perona, P.3
  • 5
    • 77952545014 scopus 로고    scopus 로고
    • Hamming embedding and weak geometric consistency for large scale image search, in: ECCV.
    • H. Jegou, M. Douze, C. Schmid, Hamming embedding and weak geometric consistency for large scale image search, in: ECCV, 2008.
    • (2008)
    • Jegou, H.1    Douze, M.2    Schmid, C.3
  • 7
    • 0001765951 scopus 로고    scopus 로고
    • A direct LDA algorithm for high-dimensional data with application to face recognition
    • Yu H., Yang J. A direct LDA algorithm for high-dimensional data with application to face recognition. Pattern Recognition 2001, 34(10):2067-2070.
    • (2001) Pattern Recognition , vol.34 , Issue.10 , pp. 2067-2070
    • Yu, H.1    Yang, J.2
  • 8
    • 34547971961 scopus 로고    scopus 로고
    • Self-taught learning: transfer learning form unlabeled data, in: ICML.
    • R. Raina, A. Battle, H. Lee, B. Packer, A.Y. Ng, Self-taught learning: transfer learning form unlabeled data, in: ICML, 2007, pp. 759-766.
    • (2007) , pp. 759-766
    • Raina, R.1    Battle, A.2    Lee, H.3    Packer, B.4    Ng, A.Y.5
  • 9
    • 51949094374 scopus 로고    scopus 로고
    • Transfer learning for image classification with sparse prototype representations, CVPR,
    • A. Quattoni, M. Collins, T. Darrell, Transfer learning for image classification with sparse prototype representations, CVPR, 2008, pp. 1-8.
    • (2008) , pp. 1-8
    • Quattoni, A.1    Collins, M.2    Darrell, T.3
  • 10
    • 50649123564 scopus 로고    scopus 로고
    • Exploiting object hierarchy: combining models from different categor levels, in: ICCV.
    • A. Zweig, D. Weinshall, Exploiting object hierarchy: combining models from different categor levels, in: ICCV, 2007.
    • (2007)
    • Zweig, A.1    Weinshall, D.2
  • 11
    • 34748847406 scopus 로고    scopus 로고
    • Generalised nearest feature line for subspace learning
    • Pang Y., Yuan Y., Li X. Generalised nearest feature line for subspace learning. Electronics Letters 2007, 43(20).
    • (2007) Electronics Letters , vol.43 , Issue.20
    • Pang, Y.1    Yuan, Y.2    Li, X.3
  • 12
    • 33744937060 scopus 로고    scopus 로고
    • Multiple similarities based kernel subspace learning for image classification
    • Yan W., Liu Q., Lu H., Ma S. Multiple similarities based kernel subspace learning for image classification. ACCV 2006, 244-253.
    • (2006) ACCV , pp. 244-253
    • Yan, W.1    Liu, Q.2    Lu, H.3    Ma, S.4
  • 13
    • 33746424489 scopus 로고    scopus 로고
    • Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval
    • Tao D., Tang X., Li X., Wu X. Asymmetric bagging and random subspace for support vector machines-based relevance feedback in image retrieval. IEEE Transactions on PAMI 2006, 28:1088-1099.
    • (2006) IEEE Transactions on PAMI , vol.28 , pp. 1088-1099
    • Tao, D.1    Tang, X.2    Li, X.3    Wu, X.4
  • 15
    • 63449129600 scopus 로고    scopus 로고
    • Iterative subspace analysis based on feature line distance
    • Pang Y., Yuan Y., Li X. Iterative subspace analysis based on feature line distance. IEEE Transactions on Image Processing 2009, 18(4):903-907.
    • (2009) IEEE Transactions on Image Processing , vol.18 , Issue.4 , pp. 903-907
    • Pang, Y.1    Yuan, Y.2    Li, X.3
  • 16
    • 61849120803 scopus 로고    scopus 로고
    • A biased minimax probability machine-based scheme for relevance feedback in image retrieval
    • Peng X., King I. A biased minimax probability machine-based scheme for relevance feedback in image retrieval. Neurocomputing 2009, 72(7-9):2046-2051.
    • (2009) Neurocomputing , vol.72 , Issue.7-9 , pp. 2046-2051
    • Peng, X.1    King, I.2
  • 17
    • 37849040752 scopus 로고    scopus 로고
    • Spectral regression: a unified subspace learning framework for content-based image retrieval, in: ACM MM.
    • D.Cai, X.He, J.Han, Spectral regression: a unified subspace learning framework for content-based image retrieval, in: ACM MM, 2007, pp. 403-412.
    • (2007) , pp. 403-412
    • Cai, D.1    He, X.2    Han, J.3
  • 19
    • 70450209196 scopus 로고    scopus 로고
    • Linear spatial pyramid matching using sparse coding for image classification, CVPR
    • J. Yang, K. Yu, Y. Gong, T. Huang, Linear spatial pyramid matching using sparse coding for image classification, CVPR, 2009, pp. 1794-1801.
    • (2009) , pp. 1794-1801
    • Yang, J.1    Yu, K.2    Gong, Y.3    Huang, T.4
  • 20
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps, CVPR
    • K. Kavukcuoglu, M. Ranzato, R. Fergus, Y. LeCun, Learning invariant features through topographic filter maps, CVPR, 2009, pp. 1605-1612.
    • (2009) , pp. 1605-1612
    • Kavukcuoglu, K.1    Ranzato, M.2    Fergus, R.3    LeCun, Y.4
  • 21
    • 51949105132 scopus 로고    scopus 로고
    • Lost in quantization: improving particular object retrieval in large scale image databases, CVPR.
    • J. Philbin, O. Chum, M. Isard, J. Sivic, A. Zisserman, Lost in quantization: improving particular object retrieval in large scale image databases, CVPR, 2008, pp. 1-8.
    • (2008) , pp. 1-8
    • Philbin, J.1    Chum, O.2    Isard, M.3    Sivic, J.4    Zisserman, A.5
  • 22
    • 77952554619 scopus 로고    scopus 로고
    • A survey on transfer learning, Report.
    • S.J. Pan, Q. Yang, A survey on transfer learning, Report. http://www.cse.ust.hk/sinnopan/publications/TLsurvey_0822.pdf.
    • Pan, S.J.1    Yang, Q.2
  • 23
    • 3042535216 scopus 로고    scopus 로고
    • Distinctive image features from scale-invariant keypoints, IJCV.
    • D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV, 2004, pp. 91-110.
    • (2004) , pp. 91-110
    • Lowe, D.1
  • 24
    • 5044233274 scopus 로고    scopus 로고
    • PCA-SIFT: a more distinctive representation for local image descriptors, CVPR
    • K. Yan, S. Rahul, PCA-SIFT: a more distinctive representation for local image descriptors, CVPR, 2004, pp. 506-513.
    • (2004) , pp. 506-513
    • Yan, K.1    Rahul, S.2
  • 25
    • 77952542606 scopus 로고    scopus 로고
    • Efficient sparse coding algorithms, NIPS.
    • H. Lee, A. Battle, R. Raina, A.Y. Ng, Efficient sparse coding algorithms, NIPS, 2006.
    • (2006)
    • Lee, H.1    Battle, A.2    Raina, R.3    Ng, A.Y.4
  • 26
    • 0029938380 scopus 로고    scopus 로고
    • Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    • Olshausen B.A., Field D.J. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature 1996, 381:607-609.
    • (1996) Nature , vol.381 , pp. 607-609
    • Olshausen, B.A.1    Field, D.J.2
  • 27
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • Hyvärinen, Hoyer P.O., Inki M. Topographic independent component analysis. Neural Computation 2001, 13(7):1527-1558.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1527-1558
    • Hyvärinen1    Hoyer, P.O.2    Inki, M.3
  • 28
    • 0034920427 scopus 로고    scopus 로고
    • A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images
    • Hyvärinen A., Hoyer P.O. A two-layer sparse coding model learns simple and complex cell receptive fields and topography from natural images. Vision Research 2001, 41(18):2413-2423.
    • (2001) Vision Research , vol.41 , Issue.18 , pp. 2413-2423
    • Hyvärinen, A.1    Hoyer, P.O.2
  • 29
    • 33745855044 scopus 로고    scopus 로고
    • The pyramid matching kernel: discriminative classification with sets of image features, in: ICCV.
    • K. Grauman, T. Darrell, The pyramid matching kernel: discriminative classification with sets of image features, in: ICCV, 2005.
    • (2005)
    • Grauman, K.1    Darrell, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.