-
1
-
-
0347718066
-
Fast algorithms for projected clustering
-
C. Aggarwal, C. Procopiuc, J. L. Wolf, P. S. Yu, and J. S. Park. Fast Algorithms for Projected Clustering. In Proc. ACM SIGMOD, 1999.
-
(1999)
Proc. ACM SIGMOD
-
-
Aggarwal, C.1
Procopiuc, C.2
Wolf, J.L.3
Yu, P.S.4
Park, J.S.5
-
3
-
-
0000876414
-
Local learning algorithms
-
L. bottou and V. Vapnik. Local Learning algorithms. Neural, Computation, 4 (6):888-900, 1992.
-
(1992)
Neural, Computation
, vol.4
, Issue.6
, pp. 888-900
-
-
Bottou, L.1
Vapnik, V.2
-
4
-
-
0005287692
-
Local dimensionality reduction: A new approach to indexing high dimensional spaces
-
K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional spaces. In Proc. VLDB, 2000.)
-
(2000)
Proc. VLDB
-
-
Chakrabarti, K.1
Mehrotra, S.2
-
6
-
-
0034566393
-
Biclustering of expression data
-
Y. Cheng and G. M. Church. Biclustering of expression data. In Proc. ISMB, pages 93-103, 2000.
-
(2000)
Proc. ISMB
, pp. 93-103
-
-
Cheng, Y.1
Church, G.M.2
-
7
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm
-
A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via the EM Algorithm. Journal of the Royal Statistical Society, 39 (1):1-38, 1997.
-
(1997)
Journal of the Royal Statistical Society
, vol.39
, Issue.1
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
9
-
-
0002878444
-
Feature subset selection and order identification for unsupervised learning
-
J. G. Dy and C. E. Brodley. Feature Subset Selection and Order Identification for Unsupervised Learning. In Proc. ICML, 2000.
-
(2000)
Proc. ICML
-
-
Dy, J.G.1
Brodley, C.E.2
-
10
-
-
78149330405
-
A database interface for clustering in large spatial databases
-
M. Ester, H. P. Kriegel, and X. Xu. A database interface for clustering in large spatial databases. In Proc. KDD, 1995.
-
(1995)
Proc. KDD
-
-
Ester, M.1
Kriegel, H.P.2
Xu, X.3
-
14
-
-
0003136237
-
Efficient and effective clustering methods for spatial data mining
-
R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proc. of VLDB, 1994.
-
(1994)
Proc. of VLDB
-
-
Ng, R.T.1
Han, J.2
-
16
-
-
0032090765
-
Automatic subspace clustering of high dimensional data for data mining applications
-
June
-
D. G. R. Agrawal, J. Gehrke and P. Raghavan. Automatic Subspace Clustering of High Dimensional Data For Data Mining Applications. In Proceedings of ACM SIGMOD, pages 94-105, June 1998.
-
(1998)
Proceedings of ACM SIGMOD
, pp. 94-105
-
-
Agrawal, D.G.R.1
Gehrke, J.2
Raghavan, P.3
-
17
-
-
0000158466
-
Clustering and singular value decomposition for approximate indexing in high dimensional spaces
-
A. Thomasian, V. Castello, and C. S. Li. Clustering and singular value decomposition for approximate indexing in high dimensional spaces. In Proc. CIKM, 1998.
-
(1998)
Proc. CIKM
-
-
Thomasian, A.1
Castello, V.2
Li, C.S.3
-
18
-
-
33745913384
-
Mixtures of princi pal component analyzers
-
M. E. Tipping and C. M. Bishop. Mixtures of Princi pal Component Analyzers. Neural Computation, 1 (2), 1999.
-
(1999)
Neural Computation
, vol.1
, Issue.2
-
-
Tipping, M.E.1
Bishop, C.M.2
-
20
-
-
0030157145
-
Birch: An efficient data clustering method for very large databases
-
T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In Proc. ACM SIGOD, 1996.
-
(1996)
Proc. ACM SIGOD
-
-
Zhang, T.1
Ramakrishnan, R.2
Livny, M.3
|