메뉴 건너뛰기




Volumn , Issue , 2003, Pages 35-41

Clustering gene expression data in SQL using locally adaptive metrics

Author keywords

[No Author keywords available]

Indexed keywords

CLUSTERING PROBLEMS; CURSE OF DIMENSIONALITY; DIMENSIONALITY REDUCTION TECHNIQUES; DISTANCE FUNCTIONS; GENE EXPRESSION DATA; HIGH DIMENSIONAL SPACES; HOMOGENEOUS GROUP; INPUT FEATURES; INPUT SPACE; RELATIONAL DBMS; SIMILARITY MEASURE; WEIGHT VECTOR;

EID: 77952341457     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/882082.882091     Document Type: Conference Paper
Times cited : (6)

References (20)
  • 3
    • 0000876414 scopus 로고
    • Local learning algorithms
    • L. bottou and V. Vapnik. Local Learning algorithms. Neural, Computation, 4 (6):888-900, 1992.
    • (1992) Neural, Computation , vol.4 , Issue.6 , pp. 888-900
    • Bottou, L.1    Vapnik, V.2
  • 4
    • 0005287692 scopus 로고    scopus 로고
    • Local dimensionality reduction: A new approach to indexing high dimensional spaces
    • K. Chakrabarti and S. Mehrotra. Local dimensionality reduction: A new approach to indexing high dimensional spaces. In Proc. VLDB, 2000.)
    • (2000) Proc. VLDB
    • Chakrabarti, K.1    Mehrotra, S.2
  • 6
    • 0034566393 scopus 로고    scopus 로고
    • Biclustering of expression data
    • Y. Cheng and G. M. Church. Biclustering of expression data. In Proc. ISMB, pages 93-103, 2000.
    • (2000) Proc. ISMB , pp. 93-103
    • Cheng, Y.1    Church, G.M.2
  • 9
    • 0002878444 scopus 로고    scopus 로고
    • Feature subset selection and order identification for unsupervised learning
    • J. G. Dy and C. E. Brodley. Feature Subset Selection and Order Identification for Unsupervised Learning. In Proc. ICML, 2000.
    • (2000) Proc. ICML
    • Dy, J.G.1    Brodley, C.E.2
  • 10
    • 78149330405 scopus 로고
    • A database interface for clustering in large spatial databases
    • M. Ester, H. P. Kriegel, and X. Xu. A database interface for clustering in large spatial databases. In Proc. KDD, 1995.
    • (1995) Proc. KDD
    • Ester, M.1    Kriegel, H.P.2    Xu, X.3
  • 12
    • 0034832364 scopus 로고    scopus 로고
    • Locally adaptive dimensionality reduction for indexing large time series databases
    • E. Keogh, K. Chakrabarti, S. Mehrotra, and M. Paz-zani. Locally adaptive dimensionality reduction for indexing large time series databases. In Proc. of ACM SIGMOD, 2001.
    • (2001) Proc. of ACM SIGMOD
    • Keogh, E.1    Chakrabarti, K.2    Mehrotra, S.3    Paz-zani, M.4
  • 14
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • R. T. Ng and J. Han. Efficient and Effective Clustering Methods for Spatial Data Mining. In Proc. of VLDB, 1994.
    • (1994) Proc. of VLDB
    • Ng, R.T.1    Han, J.2
  • 16
    • 0032090765 scopus 로고    scopus 로고
    • Automatic subspace clustering of high dimensional data for data mining applications
    • June
    • D. G. R. Agrawal, J. Gehrke and P. Raghavan. Automatic Subspace Clustering of High Dimensional Data For Data Mining Applications. In Proceedings of ACM SIGMOD, pages 94-105, June 1998.
    • (1998) Proceedings of ACM SIGMOD , pp. 94-105
    • Agrawal, D.G.R.1    Gehrke, J.2    Raghavan, P.3
  • 17
    • 0000158466 scopus 로고    scopus 로고
    • Clustering and singular value decomposition for approximate indexing in high dimensional spaces
    • A. Thomasian, V. Castello, and C. S. Li. Clustering and singular value decomposition for approximate indexing in high dimensional spaces. In Proc. CIKM, 1998.
    • (1998) Proc. CIKM
    • Thomasian, A.1    Castello, V.2    Li, C.S.3
  • 18
    • 33745913384 scopus 로고    scopus 로고
    • Mixtures of princi pal component analyzers
    • M. E. Tipping and C. M. Bishop. Mixtures of Princi pal Component Analyzers. Neural Computation, 1 (2), 1999.
    • (1999) Neural Computation , vol.1 , Issue.2
    • Tipping, M.E.1    Bishop, C.M.2
  • 19
    • 0036372484 scopus 로고    scopus 로고
    • Clustering by pattern similarity in large data sets
    • H. Wang, W. Wang, J. Yang, and P. S. Yu. Clustering by pattern similarity in large data sets. In Proc. ACM SIGMOD, 2002.
    • (2002) Proc. ACM SIGMOD
    • Wang, H.1    Wang, W.2    Yang, J.3    Yu, P.S.4
  • 20
    • 0030157145 scopus 로고    scopus 로고
    • Birch: An efficient data clustering method for very large databases
    • T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficient Data Clustering Method for Very Large Databases. In Proc. ACM SIGOD, 1996.
    • (1996) Proc. ACM SIGOD
    • Zhang, T.1    Ramakrishnan, R.2    Livny, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.